![]() |
![]() II. MANAGEMENT MEASURES FOR AGRICULTURAL SOURCESA. Erosion and Sediment Control Management MeasureApply the erosion component of a Conservation Management System (CMS) as defined in the Field Office Technical Guide of the U.S. Department of Agriculture - Soil Conservation Service (see Appendix 2A of this chapter) to minimize the delivery of sediment from agricultural lands to surface waters, orDesign and install a combination of management and physical practices to settle the settleable solids and associated pollutants in runoff delivered from the contributing area for storms of up to and including a 10-year, 24-hour frequency.
1. ApplicabilityThis management measure is intended to be applied by States to activities that cause erosion on agricultural land and on land that is converted from other land uses to agricultural lands. Agricultural lands include:
2. DescriptionThe problems associated with soil erosion are the movement of sediment and associated pollutants by runoff into a waterbody. See Section I.F.2 of this chapter for additional information regarding problems.Application of this management measure will reduce the mass load of sediment reaching a waterbody and improve water quality and the use of the water resource. The measure can be implemented by using one of two different strategies or a combination of both. The first, and most desirable, strategy would be to implement practices on the field that would prevent erosion and the transport of sediment from the field. Practices that could be used to accomplish this are conservation tillage, contour strip-cropping, terraces, and critical area planting.
The second strategy is to route runoff from fields through practices that remove sediment. Practices that could be used to accomplish this are filter strips, field borders, grade stabilization structures, sediment retention ponds, water and sediment control basins, and terraces. Site conditions will dictate the appropriate combination of practices for any given situation. Conservation management systems (CMS) include any combination of conservation practices and management that achieves a level of treatment of the five natural resources (i.e., soil, water, air, plants, and animals) that satisfies criteria contained in the Soil Conservation Service (SCS) Field Office Technical Guide (FOTG), such as a resource management system (RMS) or an acceptable management system (AMS). These criteria are developed at the State level, with concurrence by the appropriate SCS National Technical Center (NTC). The criteria are then applied in the provision of field office technical assistance, under the direction of the District Conservationist of SCS. In-state coordination of FOTG use is provided by the Area Conservationist and State Conservationist of SCS. The erosion component of a CMS addresses sheet and rill erosion, wind erosion, concentrated flow, streambank erosion, soil mass movements, road bank erosion, construction site erosion, and irrigation-induced erosion. National (minimum) criteria pertaining to erosion and sediment control under an RMS will be applied to prevent long-term soil degradation and to resolve existing or potential off-site deposition problems. National criteria pertaining to the water resource will be applied to control sediment movement to minimize contamination of receiving waters. The combined effects of these criteria will be to both reduce upland soil erosion and minimize sediment delivery to receiving waters. The practical limits of resource protection under a CMS within any given area are determined through the application of national social, cultural, and economic criteria. With respect to economics, landowners will not be required to implement an RMS if the system is generally too costly for landowners. Instead, landowners may be required to implement a less costly, and less protective, AMS. In some cases, landowner constraints may be such that an RMS or AMS cannot be implemented quickly. In these situations, a "progressive planning approach" may be used to ultimately achieve planning and application of an RMS or AMS. Progressive planning is the incremental process of building a plan on part or all of the planning unit over a period of time. For additional details regarding CMS, RMS, and AMS, see Appendix 2A of this chapter. It is recognized that implementation of this measure may increase the potential for movement of water and soluble pollutants through the soil profile to the ground water. It is not the intent of this measure to address a surface water problem at the expense of ground water. Erosion and sediment control systems can and should be designed to protect against the contamination of ground water. Ground-water protection will also be provided through implementation of the nutrient and pesticide management measures to reduce and control the application of nutrients and pesticides.
Operation and MaintenanceContinued performance of this measure will be ensured through supporting maintenance operations where appropriate. Since practices are designed to control a specific storm frequency, they may suffer damage when larger storms occur. It is expected that damage will be repaired after such storms and that practices will be inspected periodically. To ensure that practices selected to implement this measure will continue to function as designed and installed, some operational functions and maintenance will be necessary over the life of the practices.Most structural practices for erosion and sediment control are designed to operate without human intervention. Management practices such as conservation tillage, however, do require "operation consideration" each time they are used. Field operations should be conducted with such practices in mind to ensure that they are not damaged or destroyed by the operations. For example, herbicides should not be applied to any practice that uses a permanent vegetative cover, such as waterways and filter strips. Structural practices such as diversions, grassed waterways, and other practices that require grading and shaping may require repair to maintain the original design; reseeding may also be needed to maintain the original vegetative cover. Trees and brush should not be allowed to grow on berms, dams, or other structural embankments. Cleaning of sediment retention basins will be needed to maintain their original design capacity and efficiency. Filter strips and field borders must be maintained to prevent channelization of flow and the resulting short-circuiting of filtering mechanisms. Reseeding of filter strips may be required on a frequent basis.
3. Management Measure SelectionThis management measure was selected based on an evaluation of available information that documents the beneficial effects of improved erosion and sediment control (see Section II.A.4 of this chapter). Specifically, the available information shows that erosion control practices can be used to greatly reduce the quantity of eroding soil on agricultural land, and that edge-of-field practices can effectively remove sediment from runoff before it leaves agricultural lands. The benefits of this management measure include significant reductions in the mass load of sediment and associated pollutants (e.g., phosphorus, some pesticides) entering waterbodies. By reducing the load of sediment leaving a field, downstream water uses can be maintained and improved.Two options are provided under this management measure that represent best available technology for minimizing the delivery of sediment from agricultural lands to receiving waters. Different management strategies, are employed, however, with the options. The most desirable option is "(1)" since it not only minimizes the delivery of sediment to receiving waters, but also reduces erosion to provide an agronomic benefit. Option "(2)" minimizes the delivery of sediment to receiving waters, but does not necessarily provide the agronomic benefits of upland erosion control. By providing these two options, States are given the flexibility to address erosion and sediment problems in a manner that best reflects State and local needs and preferences. By designing the measure to achieve contaminant load reduction objectives, the necessary mix of structural and management practices for a given site should not result in undue economic impact on the operator. Many of the practices that could be used to implement this measure may already be required by Federal, State, or local rules (e.g., filter strips or field borders along streams) or may otherwise be in use on agricultural fields. Since many producers may already be using systems that satisfy or partly satisfy the intent of this management measure, the only action that may be necessary will be to recognize the effectiveness of the existing practices and add additional practices, if needed. By building upon existing erosion and sediment control efforts, the time, effort, and cost of implementing this measure will be reduced.
4. Effectiveness InformationThe effectiveness of management practices depends on several factors, including:
The variability in the effectiveness of selected conservation practices that are frequently recommended by SCS in resource planning is illustrated in Table 2-2. This table can be used as a general guide for estimating the effects of these practices on water quality and quantity. The table references include additional site-specific information. Practice effects shown include changes in the water budget, sediment yield, and the movement of pesticides and nutrients. The impacts of variations in climate and soil conditions are accounted for to some extent through the presentation of effectiveness data for different soil-climate combinations. Data were not available for all soils and climates. Data for the table were obtained from the research literature and include computer model simulation results. Values are reported as the percentage of change in the mass load of a given parameter that can be expected from installing the practice. Changes are determined versus a base condition of a rain-fed, nonleguminous, continuous, row crop (usually corn) that has been cultivated under conventional tillage. Data from model studies are marked with an "M." For example, -27M indicates that the load reduction estimate of 27 percent is derived from a model simulation. Data obtained from plot studies using rainfall simulators are marked with an "S." For example, +15S indicates that the estimated load increase of 15 percent is based on a rainfall simulation study. The range is reported in parentheses, followed by other reported values within the range, set off by commas. For example, (-32 to +10), -15, +5 denotes a range from a decrease of 32 percent to an increase of 10 percent, with intermediate reported changes of a 15 percent decrease and 5 percent increase. Some practices have a relatively wide range of values because of the variability in climate, soils, and management that occurs with these practices. Although some of the ranges are large, they can usually be attributed to small changes in very small quantities (thus the percentage change is great, yet the magnitude of change is small) or to the variability of site-specific conditions. Table 2-2 contains the following information:
5. Erosion and Sediment Control Management PracticesAs discussed more fully at the beginning of this chapter and in Chapter 1, the following practices are described for illustrative purposes only. State programs need not require implementation of these practices. However, as a practical matter, EPA anticipates that the management measure set forth above generally will be implemented by applying one or more management practices appropriate to the source, location, and climate. The practices set forth below have been found by EPA to be representative of the types of practices that can be applied successfully to achieve the management measure described above.Combinations of the following practices can be used to satisfy the requirements of this management measure. The SCS practice number and definition are provided for each management practice, where available. Also included in italics are SCS statements describing the effect each practice has on water quality (USDA-SCS, 1988).
Agricultural chemicals are usually not applied to this cover in large quantities and surface and ground water quality may improve where these material are not used. Ground cover and crop residue will be increased with this practice. Erosion and yields of sediment and sediment related stream pollutants should decrease. Temperatures of the soil surface runoff and receiving water may be reduced. Effects will vary during the establishment period and include increases in runoff, erosion and sediment yield. Due to the reduction of deep percolation, the leaching of soluble material will be reduced, as will be the potential for causing saline seeps. Long-term effects of the practice would reduce agricultural nonpoint sources of pollution to all water resources.
This practice reduces erosion by increasing organic matter, resulting in a reduction of sediment and associated pollutants to surface waters. Crop rotations that improve soil tilth may also disrupt disease, insect and weed reproduction cycles, reducing the need for pesticides. This removes or reduces the availability of some pollutants in the watershed. Deep percolation may carry soluble nutrients and pesticides to the ground water. Underlying soil layers, rock and unconsolidated parent material may block, delay, or enhance the delivery of these pollutants to ground water. The fate of these pollutants will be site specific, depending on the crop management, the soil and geologic conditions.
In order to maintain the crop residue on the surface it is difficult to incorporate fertilizers and pesticides. This may increase the amount of these chemicals in the runoff and cause more surface water pollution. The additional organic material on the surface may increase the bacterial action on and near the soil surface. This may tie-up and then breakdown many pesticides which are surface applied, resulting in less pesticide leaving the field. This practice is more effective in humid regions. With a no-till operation the only soil disturbance is the planter shoe and the compaction from the wheels. The surface applied fertilizers and chemicals are not incorporated and often are not in direct contact with the soil surface. This condition may result in a high surface runoff of pollutants (nutrient and pesticides). Macropores develop under a no-till system. They permit deep percolation and the transmittal of pollutants, both soluble and insoluble to be carried into the deeper soil horizons and into the ground water. Reduced tillage systems disrupt or break down the macropores, incidentally incorporate some of the materials applied to the soil surface, and reduce the effects of wheeltrack compaction. The results are less runoff and less pollutants in the runoff.
Increased infiltration may increase the transportation potential for soluble substances to the ground water.
Soluble pesticides and nutrients may be delivered to and possibly through the root zone in an amount proportional to the amount of soluble pesticides applied, the increase in infiltration, the chemistry of the pesticides, organic and clay content of the soil, and amounts of surface residues. Percolating water below the root zone may carry excess solutes or may dissolve potential pollutants as they move. In either case, these solutes could reach ground water supplies and/or surface downslope from the contour orchard area. The amount depends on soil type, surface water quality, and the availability of soluble material (natural or applied).
During grading, seedbed preparation, seeding, and mulching, large quantities of sediment and associated chemicals may be washed into surface waters prior to plant establishment.
When this practice is employed, raindrops are intercepted by the residue reducing detachment, soil dispersion, and soil compaction. Erosion may be reduced and the delivery of sediment and associated pollutants to surface water may be reduced. Reduced soil sealing, crusting and compaction allows more water to infiltrate, resulting in an increased potential for leaching of dissolved pollutants into the ground water. Crop residues on the surface increase the microbial and bacterial action on or near the surface. Nitrates and surface-applied pesticides may be tied-up and less available to be delivered to surface and ground water. Residues trap sediment and reduce the amount carried to surface water. Crop residues promote soil aggregation and improve soil tilth.
This practice will assist in the stabilization of a watershed, resulting in the reduction of sheet and rill erosion by reducing the length of slope. Sediment may be reduced by the elimination of ephemeral and large gullies. This may reduce the amount of sediment and related pollutants delivered to the surface waters.
This practice reduces erosion by having perennial vegetation on an area of the field. Field borders serve as "anchoring points" for contour rows, terraces, diversions, and contour strip cropping. By elimination of the practice of tilling and planting the ends up and down slopes, erosion from concentrated flow in furrows and long rows may be reduced. This use may reduce the quantity of sediment and related pollutants transported to the surface waters.
Filter strips for sediment and related pollutants meeting minimum requirements may trap the coarser grained sediment. They may not filter out soluble or suspended fine-grained materials. When a storm causes runoff in excess When the field borders are located such that runoff flows across them in sheet flow, they may cause the deposition of sediment and prevent it from entering the surface water. Where these practice are between cropland and a stream or water body, the practice may reduce the amount of pesticide application drift from entering the surface water of the design runoff, the filter may be flooded and may cause large loads of pollutants to be released to the surface water. This type of filter requires high maintenance and has a relatively short service life and is effective only as long as the flow through the filter is shallow sheet flow. Filter strips for runoff from concentrated livestock areas may trap organic material, solids, materials which become adsorbed to the vegetation or the soil within the filter. Often they will not filter out soluble materials. This type of filter is often wet and is difficult to maintain. Filter strips for controlled overland flow treatment of liquid wastes may effectively filter out pollutants. The filter must be properly managed and maintained, including the proper resting time. Filter strips on forest land may trap coarse sediment, timbering debris, and other deleterious material being transported by runoff. This may improve the quality of surface water and has little effect on soluble material in runoff or on the quality of ground water. All types of filters may reduce erosion on the area on which they are constructed. Filter strips trap solids from the runoff flowing in sheet flow through the filter. Coarse-grained and fibrous materials are filtered more efficiently than fine-grained and soluble substances. Filter strips work for design conditions, but when flooded or overloaded they may release a slug load of pollutants into the surface water.
Where reduced stream velocities occur upstream and downstream from the structure, streambank and streambed erosion will be reduced. This will decrease the yield of sediment and sediment-attached substances. Structures that trap sediment will improve downstream water quality. The sediment yield change will be a function of the sediment yield to the structure, reservoir trap efficiency and of velocities of released water. Ground water recharge may affect aquifer quality depending on the quality of the recharging water. If the stored water contains only sediment and chemical with low water solubility, the ground water quality should not be affected.
This practice may reduce the erosion in a concentrated flow area, such as in a gully or in ephemeral gullies. This may result in the reduction of sediment and substances delivered to receiving waters. Vegetation may act as a filter in removing some of the sediment delivered to the waterway, although this is not the primary function of a grassed waterway. Any chemicals applied to the waterway in the course of treatment of the adjacent cropland may wash directly into the surface waters in the case where there is a runoff event shortly after spraying. When used as a stable outlet for another practice, waterways may increase the likelihood of dissolved and suspended pollutants being transported to surface waters when these pollutants are delivered to the waterway.
Reduced runoff and increased vegetation may lower erosion rates and subsequent yields of sediment and sediment-attached substances. Less applied nitrogen may be required to grow crops because grasses and legumes will supply organic nitrogen. During the period of the rotation when the grasses and legumes are growing, they will take up more phosphorus. Less pesticides may similarly be required with this practice. Downstream water temperatures may be lower depending on the season when this practice is applied. There will be a greater opportunity for animal waste management on grasslands because manures and other wastes may be applied for a longer part of the crop year.
Sediment basins will remove sediment, sediment associated materials and other debris from the water which is passed on downstream. Due to the detention of the runoff in the basin, there is an increased opportunity for soluble materials to be leached toward the ground water.
The crops are arranged so that a strip of grass or close-growing crop is alternated with a strip of clean-tilled crop or fallow or a strip of grass is alternated with a close-growing crop (Figure 2-4). This practice may reduce erosion and the amount of sediment and related substances delivered to the surface waters. The practice may increase the amount of water which infiltrates into the root zone, and, at the time there is an overabundance of soil water, this water may percolate and leach soluble substances into the ground water.
The crops are arranged so that a strip of grass or a close-growing crop is alternated with a clean-tilled crop or fallow. This practice may reduce erosion and the delivery of sediment and related substances to the surface waters. The practice may increase infiltration and, when there is sufficient water available, may increase the amount of leachable pollutants moved toward the ground water. Since this practice is not on the contour there will be areas of concentrated flow, from which detached sediment, adsorbed chemicals and dissolved substances will be delivered more rapidly to the receiving waters. The sod strips will not be efficient filter areas in these areas of concentrated flow.
This practice reduces the slope length and the amount of surface runoff which passes over the area downslope from an individual terrace. This may reduce the erosion rate and production of sediment within the terrace interval. Terraces trap sediment and reduce the sediment and associated pollutant content in the runoff water which enhance surface water quality. Terraces may intercept and conduct surface runoff at a nonerosive velocity to stable outlets, thus, reducing the occurrence of ephemeral and classic gullies and the resulting sediment. Increases in infiltration can cause a greater amount of soluble nutrients and pesticides to be leached into the soil. Underground outlets may collect highly soluble nutrient and pesticide leachates and convey runoff and conveying it directly to an outlet, terraces may increase the delivery of pollutants to surface waters. Terraces increase the opportunity to leach salts below the root zone in the soil. Terraces may have a detrimental effect on water quality if they concentrate and accelerate delivery of dissolved or suspended nutrient, salt, and pesticide pollutants to surface or ground waters.
The practice traps and removes sediment and sediment-attached substances from runoff. Trap control efficiencies for sediment and total phosphorus, that are transported by runoff, may exceed 90 percent in silt loam soils. Dissolved substances, such as nitrates, may be removed from discharge to downstream areas because of the increased infiltration. Where geologic condition permit, the practice will lead to increased loadings of dissolved substances toward ground water. Water temperatures of surface runoff, released through underground outlets, may increase slightly because of longer exposure to warming during its impoundment.
Wetland and riparian zone protection practices are described in Chapter 7.
6. Cost InformationBoth national and selected State costs for a number of common erosion control practices are presented in Tables 2-3 through 2-7. The variability in costs for practices can be accounted for primarily through differences in site-specific applications and costs, differences in the reporting units used, and differences in the interpretation of reporting units.[ Table 2-3 ] [ Table 2-4 ] [ Table 2-5 ] [Table 2-6 ] [Table 2-7 ] The cost estimates for control of erosion and sediment transport from agricultural lands in Table 2-8 are based on experiences in the Chesapeake Bay Program, but are illustrative of the costs that could be incurred in coastal areas across the Nation. It is important to note that for some practices, such as conservation tillage, the net costs often approach zero and in some cases can be negative because of the savings in labor and energy. The annual cost of operation and maintenance is estimated to range from zero to 10 percent of the investment cost (USDA-SCS-Michigan, 1988).
Continue to Next Section Return to the Table of Contents
This page last updated October 4, 1999 |