ESTIMATES OF THE VOLUME OF MSWAND SELECTED COMPONENTS
IN TRASH CANS AND LANDFILLS
Final Report
February 1990

Prepared for
THE COUNCIL FOR SOLID WASTE SOLUTIONS Dr. Ronald N. Liesemer, Vice President, Technology

By

FRANKLIN ASSOCIATES, LTD. Prairie Village, Kansas

Robert G. Hunt
Veronica R. Sellers
William E. Franklin Janet M. Nelson

With
THE GARBAGE PROJECT
Tucson, Arizona
William L. Rathje
Wilson W. Hughes
Douglas C. Wilson

ACKNOWLEDGEMENTS

This work was conducted for The Council for Solid Waste Solutions under the direction of Dr. Ronald N. Liesemer, Vice President, Technology. At Franklin Associates, Ltd., the work was under the general direction of William E. Franklin, with Robert G. Hunt serving as project leader and principal analyst.

The experimental program was conducted by The Garbage Project, Department of Anthropology, Bureau of Applied Research in Anthropology, the University of Arizona. This work was under the general direction of William L. Rathje, Director, with Wilson W. Hughes, Co-Director,serving as the project leader and field supervisor.

We express appreciation to Ron Meyerson and Hector Loya, Sanitation Division, Department of Operations, City of Tucson, Arizona, who assisted the project by obtaining fresh refuse samples, and coordinated arrangements for the landfill sampling.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 1
INTRODUCTION 1
RESEARCH APPROACH 1
SUMMARY OF FINDINGS 2
PACKAGING VOLUME 3
VOLUME (\%) -TO-WEIGHT (\%) RATIOS 4
VALIDITY OF RESULTS 5
ESTIMATES OF THE VOLUME OF MSW AND SELECTED COMPONENTS IN TRASH CANS AND LANDFILLS 6
INTRODUCTION 6
HISTORICAL DATA ON WASTE VOLUMES 7
MSW Density 7
Discarded Plastic Densities 9
EXPERIMENTAL PROGRAM 9
Program Goals 9
Methodology 11
Waste Categories 11
Compression Machine 13
Sources of Fresh Waste 13
Overview of Sorting and Compression Procedures 13
Landfill Samples 14
DATA AND CALCULATIONS 15
Glass Containers 19
Metals 21
Paper and Paperboard 22
Plastics 22
Other Components of Waste 23
Volume Factors for MSW 23
Comments on Validity 26
SUMMARY AND OVERVIEW OF PACKAGING TRASH 27
SUMMARY AND OVERVIEW OF LIVING AREA TRASH 27
SUMMARY AND OVERVIEW OF MSW (EXCLUDING DURABLES) 29
OVERVIEW OF MSW (INCLUDING DURABLES) 29
REFERENCES 31
APPENDICES 33Appendix A - Supporting TablesAppendix B - Volume of Solid Wastes UnderDiffering Landfill Conditions;Compaction Experiments on Freshand Landfill Refuse from Tucson,ArizonaAppendix C - Identification of High-InterestSegments of Solid Waste

LIST OF TABLES

Table Page
1 Density Data for Total MSW 8
Historical Density Data for Discarded Plastics 10
Waste Categories for Compression Experiments 12
Summary of Density Factors 16
Trash Can and Landfill Volume of Packaging Discarded to MSW Originating from Homes and Businesses - 1986 17
Trash Can and Landfill Volume of Components of MSW Originating from Living Areas of Houses - 1986 18
Trash Can and Landfill Volume for MSW (Excluding Durables) - 1986 25
Summary of Volume Factors for the Packaging Components of MSW 28
Summary of Volume Factors for Components of MSW Originating in Living Areas 28
Summary of MSW Volume Factors (Excluding Durables) 30
Summary of MSW Volume Factors (Including Durables) 30
LIST OF FIGURES
Figure Page
1 Composition of MSW and Packaging Components Discarded in 1986 20
Composition of MSW and Living Area Components Discarded in 198620
Weight of Packaging Discards in MSW, 1986 24
Volume of Packaging Discards in MSW, 1986 24
\qquad

EXECUTIVE SUMMARY

INTRODUCTION

The current intense debate over federal, state, and local waste management policies is taking place in an environment rich in speculation and opinion, but poor in factual evidence about the true contribution of various materials and products to the total quantity of municipal solid waste that must be managed.

The fact is that until now, there has been no comprehensive database available to policy-makers and the public that characterizes the volume of the various components of municipal solid waste (MSW). As a result, many estimates have been made and published--without any real scientific basis--that have had a profound impact on waste management policies. In the case of plastics, volume estimates reported in the news media have ranged from 30 percent to 70 percent of MSW.

This report presents the results of independent research which offers the first comprehensive, systematic characterization of the relative volumes of the components of MSW. The research was sponsored by the Council for Solid Waste Solutions. The report describes the development of an experimentally derived set of conversion factors which have enabled researchers to use an existing database that characterizes the weights of MSW components to determine the volume of those components in landfills. This research is important because, simply put, landfills do not close because they are overweight, they close because they have reached their volume capacity.

RESEARCH APPROACH

Franklin Associates, Ltd., prepares for the U.S. Environmental Protection Agency (EPA) a widely used database characterizing the weight of various materials and product categories in municipal solid waste. The challenge presented was to find conversion factors for each product category in MSW that would allow existing weight data to be converted into volume equivalents--expressed in cubic yards under landfill conditions.

A comprehensive search for existing data identified only one source of reliable and scientifically measured weight-to-volume factors--data from actual landfill excavations conducted by The Garbage Project, of the University of Arizona at Tucson.

An analysis of The Garbage Project's database produced a set of conversion factors for most materials. However, in order to
ensure a consistent, scientific, and more reliable database for the volume of materials in MSW, an experimental program was also initiated as a joint project between Franklin Associates, Ltd. and The Garbage Project.

The project involved obtaining samples from landfill excavations. The wastes were sorted by material category and subjected to pressure in a specially designed machine. Representative categories of both plastics and paper products typically disposed in landfills were developed. Weight-to-volume (density) measures were obtained over a designated wide range of conditions. The experiments were carried out by graduate students at the University of Arizona under the direction of Dr. William L. Rathje and Wilson W. Hughes.

SUMMARY OF FINDINGS

The research reported here determined that the total volume of plastic products in municipal solid waste was 18 percent in 1986 under landfill conditions. This corresponds to the widely published estimate that plastic products were 7.3 percent by weight of MSW in 1986 as reported in the Franklin Associates, Ltd. waste characterization report for the EPA. The volume (\%) -to-weight (\%) ratio for plastic products was determined to be (2.5:1).

Paper and paperboard are the dominant materials in MSW, occupying 38 percent by volume. Metals account for 14 percent, glass for 2 percent, and other materials represent 28 percent of the volume of municipal solid waste.

VOLUME OF MATERIALS IN MSW

Plastics
Paper E Metal Glass
四 Yard瞯 Food © Other

In the process of determining weight-to-volume factors for the various materials in the municipal waste stream, Franklin Associates, Ltd. assumed that the density factors for durable products would be similar to the density factors for nondurable products. This assumption was made because the researchers were unable to develop statistically reliable conversion factors for durable products such as appliances, furniture, and tires.

The disposal of durable products is frequently different from the disposal of other discarded products, such as packaging. Plastic products in MSW, excluding durables, were found to be 16 percent by volume and 6.2 percent by weight for 1986 , based on the database developed by Franklin Associates for EPA.

PACRAGING VOLUME

Plastics packaging accounted for 27 percent of the total volume of the packaging component in municipal solid waste in 1986. Paper and paperboard amounted to 46 percent of packaging, metals were 15 percent, and glass was 7 percent of packaging.

PACKAGING VOLUMES

The packaging component represented approximately 34 percent of the total volume of municipal solid waste generated in the U.S. in 1986: Plastics packaging accounted for 9 percent of total MSW volume, paper and paperboard packaging amounted to 16 percent, metal containers equaled 5 percent of MSW, and glass packaging accounted for 2 percent of the volume of municipal solid waste.

PACKAGING VOLUME IN MSW

VOLUME (\%) -TO-WEIGHT (\%) RATIOS
The volume (\%)-to-weight(\%) ratio for plastics, which is (2.5:1), is higher than other material categories because plastics are so light in weight. There has been general agreement in the past that plastics occupy a greater percentage of volume than weight in the waste stream. However, as previously indicated, estimates of the volume of plastics in MSW have ranged from 30 percent to 70 percent, compared to the 18 percent result produced by this research, which used actual landfill samples.

Material	Weight $(\%)$	Landfill Volume $(\%)$	$\left.\begin{array}{c}\text { Ratio } \\ \text { Vol. }\end{array} \%\right) /$ Wt. (\%)

VALIDITY OF RESULTS

Some assessment of error must be made for this new volume database. As is described in detail in the full report which follows, the experimental values derived from this research are reproducible within $+/-20$ percent. Franklin Associates, Ltd. believes these are outside limits and that the actual results may be more accurate. However, the researchers prefer to apply a conservative confidence range to the results of this research because, to our knowledge, it is the first of its kind completed in the U.S.

Using the $+/-20$ percent confidence range, the maximum volume (\%) -to-weight (\%) ratio of (2.5:1) is almost certainly between the limits of (2.0:1) and (3.0:1), with (2.5:1) the most probable volume (\%)-to-weight (\%) ratio for plastics in MSW. Therefore, our estimate that plastics are 18 percent by volume of MSW is almost certainly between the limits of 14 percent and 22 percent for 1986.

Another measure of validity is a comparison of the new experimentally derived volume factors developed with this research, to the historical data from actual landfill samples taken by The Garbage Project. When comparing five broad categories in the two databases, all are within three percentage points. Given the range of accuracy in the two databases, this comparison is comforting.

In addition, the comparisons of actual landfill weight percentages by broad material categories are similar for the Garbage Project samples from four different landfills, compared to Franklin Associates' calculated weight percentages which were derived independently for EPA.

ESTIMATES OF THE VOLUME OF MSW AND SELECTED COMPONENTS IN TRASH CANS AND LANDFILLS

INTRODUCTION

The current intense nationwide interest in municipal solid waste management, which began to accelerate in 1986, has stimulated the demand for factual information of all kinds regarding MSW. One of the primary needs is reliable information on the contributions of various materials and products to the total quantities of MSW that must be managed.

Municipal solid waste can be measured by weight and by volume. In practice, some landfill operators charge fees based on actual weight (tons), while many others charge on a volume basis (cubic yards). However the incoming wastes are measured, landfill lifetime is based on the volumes of waste that are received, compacted, and covered for long-term disposal. The volume measurement is thus very important to solid waste management planners, whether they are dealing with landfilling or with the alternatives: source reduction, recycling, composting, or burning in waste-to-energy incinerators.

Measuring the weight or volume of mixed municipal solid waste provides no insight into the contribution of the individual components--products made of paper, plastics, metals, glass, etc.--in the MSW. There are two ways to estimate the weight percentages of MSW components. The first is to sample, sort, and weigh the various components at the landfill or elsewhere. The second is to perform a materials flow analysis, which is based on national production data for the MSW components, adjusted for import/exports and other factors. MSW sampling studies have been done at numerous locations. In addition, there is a widely-used national database utilizing the materials flow methodology to characterize the components in MSW by weight for the years 1960 to 2000; this database has been developed, updated, and refined by Franklin Associates, Ltd. for the U.S. EPA (and others) over a period of many years.

There has been no systematic database characterizing the volume of the various components of MSW. As a result, many estimates have been made and published, and decisions regarding solid waste management have been made, without any real scientific basis. This report presents the results of a study, sponsored by the Council for Solid Waste Solutions, which presents the first comprehensive, systematic characterization of the relative volumes of the components of MSW. The report describes the development of an experimentally derived set of conversion factors which enable data from the MSW-by-weight database to be converted to a volume database. Results of the analysis are also presented.

HISTORICAL DATA ON WASTE VOLUMES

The main purpose of this report is to examine the volume (as opposed to weight) of the components of solid waste. Of particular interest are data on plastics. The first step of the analysis was to search the historical literature for volume data and other information. Then, telephone and personal interviews were conducted across the country to find all available information on this subject. This section is a summary of those findings.

MSW Density

The majority of the studies identified were completed in the early 1970 s when municipal solid waste research was being funded at a significant level. Few of these studies were relevant to this work for two reasons. First, in the early 1970 s plastics were not of much interest because they were a very small percentage of MSW. Most work from that era deals with mixed waste. The second reason is that the volume of plastics or other individual components in MSW was not yet an issue.

Private sources all across the U.S. were contacted about recent experimental and theoretical work on the weight and volume relationship of individual components. From these sources, six major studies and several key personal contacts were identified. From the studies and personal contacts, data were gathered on the densities (weight per unit volume) of average MSW, aggregate plastics, and various plastic components as discarded, in compactor trucks, in landfills, and baled. The compiled data are shown in Tables 1 and 2. These tables contain virtually all of the data available.

Table 1 summarizes our findings for total MSW. The values shown here are widely accepted in the waste industry as being typical, realizing that in any given situation a single measurement of density could be substantially different from the values shown. MSW as discarded in trash cans is considered to have a density of about 100 pounds per cubic yard, although any given trash can may have a density ranging from 50 pounds per cubic yard to several hundred pounds per cubic yard, depending on the particular materials present, moisture content, and whether the trash components were already crushed or broken to some degree. Nevertheless, we will consider 100 pounds per cubic yard as a typical and common value for MSW in trash cans.

Table 1
DENSITY DATA FOR TOTAL MSW (Pounds per cubic yard)

Msw As	MSW In	MSW In	Baled
Discarded	Compactor Trucks	Landfills	MSW 3/
100 (1) 1/	600 (1)	800 (5)	1,458 (8)
105 (5)	810 (4)	1,000-1,400 (7)	890-1,560 (9)
	563 (5)		1,134 (9)
	667-800 (6)		1,080 (9)
	600-1,000 (7) 2/		1,430 (9)

[^0]Source: Franklin Associates, Ltd.

In compactor trucks and landfills, the trash is compacted to achieve volume reduction for efficient transportation and disposal. In the compactor truck, pressures average perhaps 50 pounds per square inch in the trash as a result of the compaction by the hydraulic ram. As shown in Table 1, this results in MSW densities that range from about 600 to 1,000 pounds per cubic yard. This also is highly variable, depending on individual situations.

At the landfill site, the compactor truck dumps its load, which is spread out and run over by a compaction vehicle. This action by the compaction vehicle is important. Under the wheel of the vehicle, pressures as great as several thousand pounds per square inch may be exerted. This action breaks glass containers, ruptures plastic bottles, and further compresses many other items. As the material is covered in the landfill, the weight of the waste and soil will exert a steady, sustained pressure; this pressure will typically be about one pound per
square inch for each yard depth of waste and cover. A typical pressure is about 10 to 20 pounds per square inch, but pressure is much lower near the top of the landfill and greater at depths of more than 60 feet. Therefore, the action of the compaction vehicle is important in final volume densities. As shown in Table 1, typical landfill densities in a modern properly-operated landfill are in the range of about 800 to 1,400 pounds per cubic yard. However, these density values include some construction
debris and industrial wastes deposited with MSW. We estimate the density of MSW alone to be in the range of 800 to 1,000 pounds per cubic yard.

Baled MSW is generally considered to have the same or perhaps slightly greater density than continuously compacted MSW. Bale densities were obtained as an additional check on our data. As shown in Table 1, bale densities range from 890 to 1,560 pounds per cubic yard, which is further confirmation of the reasonableness of our selected range of 800 to 1,000 pounds per cubic yard for MSW.

Discarded Plastic Densities

Table 2 summarizes the results of plastics density values found in the literature and from personal interviews. None of the literature sources (1 to 6) were completely satisfactory in terms of reporting reproducible experimental results verified by other researchers. In some sources the details of the methodologies used were incomplete or missing entirely, and in others it was difficult to determine if the numbers generated were even based on actual experiments. In some cases, the values result from estimates only. Telephone calls to the authors were made to clarify issues. The identified sources, the quality, and the relevance of the data to the goals of this particular study are questionable in most cases.

As shown in Table 2, a wide variety of data were found, but very little comparison is possible between different researchers. One exception is the data for baled plastics. We found more data for bales than for other categories, and these values are helpful. Balers reach compression pressures generally in the range of 50 to 200 pounds per square inch, and baled densities are generally considered to approximate or exceed landfill densities for film, and also for rigid plastics, if air trapping is minimized. This can be achieved by puncturing bottles or removing closures prior to baling.

In summary, an exhaustive search for quantitative descriptions of discarded plastics volumes resulted in a meager database. It was judged to be unsuitable as a basis for policy decisions.

EXPERIMENTAL PROGRAM

Program Goals

In order to develop a consistent, scientific, and more reliable database for the volume of materials in solid waste, an experimental program was developed as a joint project between FAL and the University of Arizona. The experiments were carried out by the staff of The Garbage Project of the Department of

Table 2

	HISTORICAL DENSITY DATA FOR DISCARDED PLASTICS (Pounds per cubic yard)							
Product Category	As Discarded		In Compactor Truck		In Landfill		Baled	
Mixed Plastics		(1)	150	(1)			756	(10)*
	80	(3)	160	(3)				
			189	(4)				
Mixed Containers	33.5	(1)	140	(1)	218	(5)	342-373	(12)
	38.1	(5)	171	(5)				
PET bottles	34	(4)	42-4	(4)			256	(6)
	40	(4)					571-623	(13)
							541	(14)
							315-631	(10)
							460	(4)
HDPE bottles	22-24						550	(11)
							427	(12)
	22						595	(14)
Plastic packaging	49.3	(5)	493	(5)	$\begin{aligned} & 986 \\ & 189 \end{aligned}$	(5) (6)		
Miscellaneous Items								
Film	23.8	(1)	250	(1)*			756	(10)**
Fast food packaging					261	(2)		
Diapers					308	(2)		
LDPE film							451	(14)
PVC film***							1351	(14)
EPS foam							180	(10)
- Mostly film.								
** Baled aggregate, mostly film. *** Industrial PVC scrap, not MSW.								
	e terep	thala						
$\begin{array}{ll}\text { PET: } & \text { Polyethy } \\ \text { HDPE: } & \text { High-de }\end{array}$	y polyet	hylen						
$\begin{array}{ll}\text { HDPE: } & \text { High-de } \\ \text { LDPE: } & \text { Low-de }\end{array}$	polyet	ylene						
PVC: Polyviny	loride							
EPS: Expand	polystyre							
Source: Franklin Associates, Ltd.								

Anthropology, Bureau of Applied Research in Anthropology, University of Arizona, Tucson, under the direction of William L. Rathje and Wilson W. Hughes. Their report is included as Appendix B.

The goal of the program was to sort wastes obtained from household trash bags picked up from the curb into nine categories, and to compress and crush the samples taken from each category in order to develop a reproducible compaction database which could be used to develop trash can and landfill densities. Weight to volume relationships were obtained by finding the sample density (pounds per cubic yard) under a wide range of conditions. Similar experiments were conducted on materials obtained from landfill excavations in order to establish the validity of the experimental procedures.

Methodology

Waste Categories. The waste was categorized into six materials: glass, steel, aluminum, paper and paperboard, plastics, and other packaging. Sufficient solid waste density data exist for glass, steel, and aluminum, so they were not included in the experimental program. The "other packaging" category is quite diverse and accounts for only about 2 percent by weight of MSW. Because the amount is so small, it was omitted from further consideration.

The two remaining categories are paper and paperboard and plastics. Not only are these large and important categories, but their response to compression is difficult to quantify. For example, a glass bottle breaks (or doesn't break) and a metal can crushes permanently under compression, both in a way that is relatively easy to measure and to characterize. On the other hand, paper and plastic materials behave in a more complex manner. Plastic is especially difficult to characterize because of its resilience, or its tendency to resume its shape after pressure is removed. While paper is somewhat easier to characterize, its place as the dominant material in solid waste makes it important to characterize accurately.

The living area wastes were separated into nine categories prior to conducting the compression tests. These categories were developed using two criteria. First, waste products were grouped based on material and broad crushability characteristics, and second, the categories need to be composed of products so that they are consistent with existing waste composition databases in order to maximize the usefulness. Table 3 is a listing of the nine categories, with examples of products included.

Table 3

WASTE CATEGORIES FOR COMPRESSION EXPERIMENTS

A NONPACKAGING PAPER

- paper plates, tissues, towels, mail, stationery, magazines, newsprint, forms, greeting cards

B CORRUGATED PAPERBOARD PACKAGING
C PAPERBOARD BOXES

- food boxes (cereals, etc.), detergent boxes, milk cartons, beer six-pack holders (if closed on all sides)

D OTHER PACKAGING--PAPER AND PAPERBOARD

- paper bags and wrapping papers, paper towel rolls, molded pulp egg cartons, bottle/can holders (if open on one or more sides), butcher paper, cups, hinged fast-food boxes, cigarette wrappers

E PLASTIC FILM PACKAGING

- bags and wrappers (trash, food, etc.), baggies, food wrap films, wet-wipes packs, condiment packets, bubble packing

F PLASTIC RIGID PACKAGING CONTAINERS

- bottles, jars, tubs and lids, microwave trays, hard cosmetic cases, bottle basecups

G OTHER PLASTIC PACKAGING

- cookie trays, six-pack rings and holders, flexible tubes, all polystyrene foam

H NONPACKAGING PLASTIC

- plastic cups and utensils, pens, razors, toys, plastic food serving trays, hangers, Easter grass, sponges

I COMPOSITE/MIXTURES (papers and plastics)

- blister packs, juice concentrate containers, spiralwound dough containers, diapers

At times it was not easy to classify materials, but experienced sorters seldom encounter difficulties. In this study, the sorting crews were primarily graduate students, many of them doctoral candidates, and all were trained and experienced in material identification. They were careful and meticulous, leading to very low classification error.

Compression Machine. A hydraulic compression machine designed to compress trash was used by the University of Arizona to carry out these studies.

The lower part of the machine is a straight-walled metal container approximately the same size as a trash can. When the container is filled, a loosely-fitting flat metal and wood lid with the same cross-sectional shape as the container is placed on top of the trash. A vertical hydraulic cylinder is then swung into place so that when the cylinder moves down it forces the metal lid downward, compressing the trash. As the cylinder moves downward, a stylus points at a metal measuring tape indicating the position of the lid in inches and fractions of an inch. These measurements are calibrated and converted into a volume measurement of the entrapped trash. At the same time, an air pressure gauge in the hydraulic system reads the air pressure in the system. These pressure readings are calibrated and can be converted into either the force of the plate on the trash, or the average pressure exerted over the face of the plate.

The container has movable walls, which can result in a container with less volume and a smaller cross-sectional area. In this configuration, high pressures can be applied to the trash, but readings are less accurate.

Sources of Fresh Waste. Because of the limited availability of landfill samples and the need to obtain trash can densities, fresh trash was compacted. Household trash was picked up from curbside by the Tucson, Arizona, Sanitation Division, Department of Operations. The trash bags were loaded into an open truck so as not to compact them, and were delivered to the Garbage Project's sorting area located on the University of Arizona campus.

No special instructions were given to the Department of Public Works with regard to selection of trash bags. The goal was to receive mixed waste in typical condition from households. A variety of trash was needed to obtain reasonably representative product samples. Visual inspection of the trash confirmed that there were no unusual product characteristics.

The trash in the samples represented the wide variety of products that would be found in any city in the U.S. While selecting samples from only one waste stream on a small number of days might lead to distortion if composition were being studied, it is valid for sorting to obtain a sufficient number of samples for each product or material category. Here the requirement is simply that the product trash be diverse and reasonably typical of U.S. households, which it was.

Overview of Sorting and Compression Procedures. Household trash was delivered to the sorting area and placed in a covered
holding bin. Trash bags were taken from the bin one at a time and placed on a sorting table. A single bag was opened, and a first sort was made into four barrels surrounding the sorting table. The first sort was into four categories: (1) paper and paperboard; (2) plastic; (3) mixtures/composites; and (4) discards. The discards contained trash not normally found in the living area (such as yard wastes) and food wastes.

The paper and paperboard barrel and the plastics barrel were then taken to other sorting tables for the second sort. Both paper and paperboard and plastics were each sorted into the four categories as shown in Table 3. This then resulted in a total of eight plastic and paper and paperboard categories, plus the mixture/composite category from the first sort.

Each of the plastic sort barrels was lined with a plastic bag. When a barrel became full, the bag was tied. A code number was written directly on the bag, and it was weighed. The weight of the bag itself was previously determined and the scale was set to read the net weight of the trash in the bag. The weight of each bag was recorded, and the bag was moved to the compression machine area.

Each bag was then loaded into the machine and readied for compression. A three-person team is required for operation. One person operates the compressed air valve, which controls the hydraulic cylinder, and at the same time reads a pressure gauge, calling out 5 psi increments. At each calling, a second person reads the cylinder position stylus, and the third person records the data.

The pressure is then released, the cylinder is swung aside, and the trash is removed and visually examined before being taken to a discard container.

Landfill Samples. A crucial part of this study was the determination of density of landfill samples. In June 1989, a backhoe was taken to the Tucson Los Reales landfill, and excavations were made. (See Appendix B for details.) Several time horizons were sampled (identified by dates on newspapers). They were primarily 1983 to 1985. From each time horizon, as many as eleven samples of each of the nine categories (Table 3) were obtained, although fewer were obtained for some categories. The sorting, weighing, and marking was similar to that described for fresh samples, although product identification was more difficult because of deterioration and staining.

The landfill samples were then hauled back to the compression machine and tested in an identical fashion to the fresh samples. Compression is necessary to remove air and replicate in situ landfill conditions.

A concern that might be raised is that samples from only a single landfill were collected. This would be a significant issue if we were determining composition. However, whether the people served by this landfill are typical U.S. consumers is a moot point. We were sorting by material for our samples, so that all we need is representative products. Cereal boxes are the same anywhere in the U.S., as are plastic detergent bottles, corrugated boxes, and so on. The products pulled from the Los Reales landfill were clearly typical in that regard.

A more important issue is whether the material is in typical landfill condition. To examine that issue we studied the samples taken from landfills in different geographical locations by The Garbage Project team. The three geographical locations reported were northern California, northern Illinois (Chicago area), and Tucson. Detailed studies including weights, volumes, moisture, and physical appearance were made. On the average, little difference between landfills was noted. If wastes are well compacted and daily cover is used to deter moisture entering from outside the landfill, conditions inside landfills are similar.

The conclusion reached is that there is more variability within a single landfill, than between averages of different landfills. While we feel that our landfill samples are reasonably representative, we acknowledge that sampling is a possible source of error. Efforts are underway to obtain samples from other landfills to perform additional sorting and compression tests to further examine the validity of the initial sampling program.

DATA AND CALCULATIONS

Using the waste material density values supplied by The Garbage Project (Appendix B), as well as other data sources, density factors were determined for 23 material and product categories in trash cans and in landfills. These factors are summarized in Appendix A, Table A-1. That table is repeated here as Table 4, and a brief discussion of those factors is included below. The density factors, reported in pounds per cubic yard, were then multiplied by the national quantity of waste (in pounds) to obtain the national volume of waste in cubic yards. Appendix A, Table A-2 outlines our derivation of packaging and living area discards (in tons or pounds) from our earlier EPA MSW database (15), which are the widely-accepted data for trash discards. Thus, Tables A-1 and A-2 resulted in summary Tables 5 and 6. (Interim tables are included in Appendix A as Tables A-3 through A-6.)

Tables 5 and 6 report waste volumes for two subcategories of total MSW. Those are the two highly visible waste fractions which we have called packaging and living area trash. The term packaging is self-explanatory. Living area wastes are those

SUMMARY OF DENSITY FACTORS

	Trash Can Density (lb/cuyd)	References	Landfill Density (lb/cuyd)	References
PACKAGING				
Glass Containers				
Beer \& soft drink	600	4,18	2,800	18,23
Other containers	700	4,18	2,800	18,23
Steel Containers				
Beer \& sott drink	150	4,18	557	23
Food cans	200	4,18	557	23
Other packaging	250	21	557	23
Aluminum				
Beer \& sott drink	60	4,18	250	4,18
Other packaging	45	21	550	21
Paper and Paperboard				
Corrugated	43	22	750	22
Other paperboard	42	22	819	22
Paper packaging	48	22	740	22
Plastics				
Film	84	22	667	22
Rigid containers	53	22	355	22
Other packaging	28	22	165	22
Wood Packaging	600	21	800	21
Other Misc. Packaging	203	21,22	1,014	22
NONPACKAGING				
Newspapers	170	22	798	22
Books, magazines	170	22	798	22
Nondurable Plastic	69	22	313	22
Rubber	170	21,23	343	23
Textiles	48	21,23	435	21,23
Food	500	21	2,000	23
Yard	500	19,20	1,500	19,20

Note: Also included in Appendix as Table A-1.

TABLE 5
TRASH CAN AND LANDFILL VOLUME OF PACKAGING DISCARDED TO MSW ORIGINATING FROM HOMES AND BUSINESSES - 1986

	Discards (mil tons)	Weight $\%$ of Discards	Average Trash Can Density (lb/cuyd)	Packaging Volume in Trash Cans (mil cuyd)	Volume \% of Packaging Subtotal in Trash Cans	Average Landfill Density (lb/cuyd)	Packaging Volume in Landfills (mil cuyd)	Volume \% of Packaging Subtotal in Landfills
Glass Containers	10.7	25.0	654	32.7	2.6	2,816	7.6	6.6
Steel Containers	2.7	6.3	212	25.5	2.0	557	9.7	8.4
Aluminum	1.1	2.6	54	41.1	3.3	310	7.1	6.2
Paper and Paperboard	20.4	47.7	44	935.6	74.6	764	53.4	46.4
Plastics	5.6	13.1	53	210.4	16.8	356	31.5	27.4
Wood	2.1	4.9	600	7.0	0.6	792	5.3	4.6
Other Misc. Packaging	0.2	0.5	200	2.0	0.2	1,000	0.4	0.3
Total	43	100	68	1254	100	744	115	100

Note: For more detail see Appendix Tables A-5 and A-6.

TABLE 6
TRASH CAN AND LANDFILL VOLUME OF COMPONENTS OF MSW ORIGINATING FROM LIVING AREAS OF HOUSES - 1986

Dlscards (mil tons)	Welght$\%$ of Discards		Llving Area	Volum		Living Area	Volume \%	
		Trash Can	olume in	Area Discards	Landilil	Volume in	Area	
		onslty ${ }^{\text {- }}$	Trash Cans	Subto	Density	Landfills	Subtote	
		(lb/cuyd)	(mill cuyd)	Trash Cans	(lb/cuyd)	(m\\|l cuyd)	Landilils	

PACKAGING

Glass Containers	8.9	17.4	657	27.1	3.0	2,781	6.4	4.7
Steel Containers	1.6	3.1	204	15.7	1.8	561	5.7	4.2
Aluminum	1.0	2.0	53	37.8	4.2	317	6.3	4.6
Paper and Paperboard	6.8	13.3	44	307.1	34.5	777	17.5	12.9
Plastics	4.3	8.4	53	161.6	18.2	355	24.2	17.8
Other Misc. Packaging	0.1	0.2	200	1.0	0.1	1,000	0.2	0.1
Packaglng Subtotal	22.7	44.4	83	550.3	61.8	753	60.3	44.4
NONPACKAGING								
Nondurable Paper	17.9	35.0	170	210.6	23.7	797	44.9	33.1
Nondurable Plastic	1.6	3.1	69	46.4	5.2	314	10.2	7.5
Other	8.9	17.4	215	82.7	9.3	877	20.3	15.0
Nonpackaging Subtotal	28.4	55.6	167	339.7	38.2	753	75.4	55.6
GRAND TOTAL	51	100	115	890	100	753	136	100

- Densities differ slightly from those in Table 5 because the product mix differs slightly.

Note: For more detail see Appendix Tables A-3 and A-4.
discarded materials which people see inside their homes. It includes common household trash discarded in kitchens, bedrooms, etc., but excludes major appliances, tires, yard wastes, and other items which are not usually put into trash cans inside living areas. The reason for focusing on these subcategories is that these are the highly visible wastes which people observe on a daily basis, and on which people base many of their opinions and intuitions about wastes.

Figures 1 and 2 further illustrate these two components of MSW. Figure 1 shows that packaging is 31 percent by weight of the total MSW discarded. Figure 1 also shows the percent composition for various types of packaging by weight as reported in Table 5. Figure 2 shows the living area wastes. These wastes are 36 percent of total MSW by weight. Living area wastes also include about one-half of the packaging materials shown in Figure 1. About one-half of packaging is discarded at home, and about one-half at restaurants, other businesses, recreational areas, etc. Table 6 shows that packaging is about 44 percent of the living area wastes.

Details on the composition of these two waste subcategories can be found in Appendix C.

Glass Containers

Trash can density factors are based on the fact that most glass containers are thrown into the trash unbroken. Data from curbside collection programs where glass is collected separately, supplemented with FAL measurements, were used to estimate the trash can densities. Beer and soft drink containers were determined to have a density of 600 pounds per cubic yard, while food jars, which are thicker-walled and heavier, have a density of 700 pounds per cubic yard. As shown in Table 5, the composite density for glass containers in the trash can was 654 pounds per cubic yard.

The case for landfill density is much more complex. Examination of landfills reveals that glass occurs in three stages of integrity: whole bottles, broken pieces that retain some shape and trap air, and pieces so small (less than 1/2-inch) that they trap no air. For small pieces, a value of 4,400 pounds per cubic yard, which is the theoretical density of glass with no air trapping, was used. For intermediate pieces and whole bottles, The Garbage Project has determined that an average density is 1,200 pounds per cubic yard. They have also determined that 50 percent of glass in landfills is small pieces, while the remaining 50 percent is whole bottles and large pieces. This results in a composite landfill density of approximately 2,800 pounds per cubic yard.

Tables 5 and 6 show that while glass is a significant fraction of solid waste when measured by weight (17 percent of living area trash, 25 percent of packaging), the volume fraction is much smaller. It ranges from 7 percent of packaging landfill trash to about 3 percent of packaging trash at the trash can.

Metals

Steel and aluminum containers dominate the metals fraction of the highly-visible solid waste.

Steel beer and soft drink cans currently account for only about 0.2 percent by weight of packaging in MSW, but food cans are 4.0 percent, while other steel containers and pails account for 2.1 percent of packaging (15).

Steel containers are found in trash cans in a wide range of compacted states. They range from nearly undamaged to substantially flattened cans. The density of food cans (the most common steel container found in household trash) is 200 pounds per cubic yard, while beer and soft drink cans are 150 pounds per cubic yard. This results in a composite average of 212 pounds per cubic yard for steel cans as found in trash cans (Table 5).

Visual inspections of landfills reveal that steel cans are rigid and resist complete flattening, but do become quite flat when run over several times by the compaction vehicle. Many steel cans are dented, bent, and nearly flattened. The Garbage Project measures the landfill density for steel to be 557 pounds per cubic yard. For comparison, we find 540 pounds per cubic yard of mechanically flattened cans in recycling centers. We expect the density of steel cans in landfills to be less, but other pieces of steel and steel pails would tend to increase the average density.

Aluminum beer and soft drink cans account for 1.6 percent of packaging in MSW by weight, while other products such as sheets of foil, foil trays, and other aluminum products account for 0.9 percent (15). Aluminum cans are easily bent, and are rarely found whole in a landfill. Moderate pressure will compact aluminum cans from their whole trash can density of 60 pounds per cubic yard to 250 pounds per cubic yard in landfills. This corresponds to a can being reduced from its near 5 -inch height to a nearly 2inch height. By comparison, mechanically-processed recycled aluminum cans achieve a density of 560 pounds per cubic yard.

Aluminum foil products, if discarded flat, could achieve a density of 4,500 pounds per cubic yard, the density of aluminum. However, they frequently are wadded, trapping air.

No reliable data were found on density of foil products, but their occurrence is at such a low level that their contribution
to volume is very small. We conducted experiments on a limited number of samples and found an average trash can density of foil products of 45 pounds per cubic yard and a landfill density of 550 pounds per cubic yard. The composite density for all aluminum products is 54 pounds per cubic yard in trash cans and 310 pounds per cubic yard in the landfill.

Metals in 1986 comprised only about 4 percent by weight of solid waste (15). Tables 5 and 6 show that they comprise 15 percent of the landfill packaging waste by volume, and as low as 6 percent by volume for trash can volume of packaging living area waste.

Paper and Paperboard

Paper and paperboard products comprise 40 percent of solid waste by weight (15), and are by far the dominant materials on that basis. Table 4 shows a wide range of trash can densities for various paper products, ranging from a low of about 40 pounds per cubic yard for boxes to 170 pounds per cubic yard for flat paper goods such as newspapers and magazines.

However, paper is the most readily compressible material in solid waste, leading to landfill densities approaching 800 pounds per cubic yard. In fact, all paper products achieve nearly the same landfill density. One of the factors leading to the high density is that paper becomes wet in a landfill, losing its structural strength to some degree. On a volume basis, paper comprises about 58 percent of living area trash in the trash can and 46 percent at the landfill, but for total packaging the percentage drops from 76 percent in the trash can to 47 percent at the landfill.

Plastics

Plastics packaging is categorized into three readily identifiable groups based on crushability. Film is the densest, with a trash can density of 84 pounds per cubic yard and a landfill density of 667 pounds per cubic yard. Rigid containers, consisting primarily of bottles and jars, are next. Many of these products are discarded with the lids on, making them resist crushing at low pressures. However, examination in landfills shows that virtually all plastic containers are flattened, even with lids screwed on securely. Thus, their density increases from 53 pounds per cubic yard in the trash can to 355 pounds per cubic yard in the landfill, a six-fold increase in density.

The third plastics packaging category is in "other packaging," which includes a wide variety of special products, such as 6-pack rings and cookie trays, but the category primarily consists of plastic foam products. This results in the lowest
density of any material in the trash can or landfill at 28 and 165 pounds per cubic yard. The maximum density of foam products is limited by the manufactured density, as no crushing of the foam air cells was observed in landfill samples.

Nonpackaging products include cups, utensils, pens, razors, toys, and many other items. The density is similar to that of containers, ranging from 69 to 313 pounds per cubic yard.

Table 5 shows a composite average of packaging densities for plastics as 53 pounds per cubic yard in the trash can and 356 pounds per cubic yard at the landfill. Table 6 shows that living area trash was similar, with densities of 53 and 355 pounds per cubic yard for plastics packaging.

Other Components of Waste

Table 5 shows that other packaging components contribute an insignificant amount to solid waste and do not merit further discussion. However, Table 6 shows that other nonpackaging components of living area wastes are 17 percent by weight and 9 to 15 percent by volume.

Volume Factors for MSW

Because the results of this work give a reasonably complete and experimentally based set of trash can and landfill volume factors which dovetails with the EPA-Franklin Associates waste composition database, our analysis can be expanded to look at total MSW. An exception to this is the lack of any density data on durable goods, which includes items such as major appliances, tires, and furniture. The Garbage Project has not found major appliances nor furniture in their 101-sample historical database from landfill excavations.

Applying our volume factors to MSW excluding durables results in the calculations summarized in Table 7. Figure 3 illustrates an important point about the weight and volume percents listed in Table 7. The top of Figure 3 illustrates that weight percents for discarded and landfilled materials are the same. This is because the discarding, hauling, and compacting do not result in changes of weight. The bottom part of Figure 3 shows that there are remarkable changes in volume. The landfilled volume is only about 14 percent of the as discarded trash can value. The primary reason why studying the volume factors are important is because they more truly relate to solid waste impacts.

Table 7 shows that in the trash can and at the landfill, MSW volume is dominated by paper and paperboard, with all other components being small by comparison. The selected factors at the bottom of Table 7 show that paper and paperboard account for

TABLE 7

TRASH CAN AND LANDFILL VOLUME FOR MSW (EXCLUDING DURABLES) - 1986

	(mill tons)	Discards	(lb/cuyd)	(mil cuyd)	(\%)	(lb/cuyd)	(mil cuyd)	(\%)
PACKAGING								
Glass Containers	10.7	8.8	654	32.7	1.7	2,816	7.6	2.8
Steel Containers	2.7	2.2	212	25.5	1.3	557	9.7	3.6
Aluminum	1.1	0.9	54	41.0	2.1	310	7.1	2.6
Paper and Paperboard	20.4	16.8	44	935.6	48.4	764	53.4	19.6
Plastics	5.6	4.6	53	210.4	10.9	356	31.5	11.5
Wood	2.1	1.7	600	7.0	0.4	792	5.3	1.9
Other Misc. Packaging	0.2	0.2	200	2.0	0.1	1,000	0.4	0.1
Packaging Subtotal	42.8	35.2	68	1,254.2	64.9	744	115.0	42.1
NONPACKAGING PRODUCTS								
Nondurable Paper	29.7	24.4	170	349.3	18.1	798	74.4	27.3
Nondurable Plastic	2.0	1.6	69	58.0	3.0	313	12.8	4.7
Apparel	1.8	1.5	48	75.0	3.9	435	8.3	3.0
Other	2.0	1.6	133	30.1	1.6	392	10.2	3.7
Nonpackaging Subtotal	35.5	29.2	139	512.4	26.5	672	105.7	38.7
NONPRODUCT WASTES								
Yard Wastes	28.3	23.3	500	113.2	5.9	1,500	37.7	13.8
Food	12.5	10.3	500	50.0	2.6	2,000	12.5	4.6
Other	2.6	2.1	2,500	2.1	0.1	2,500	2.1	0.8
GRAND TOTAL	122	100	126	1932	100	892	273	100
PAPER AND PLASTIC SUBTOTALS (PACKAGING + NONPACKAGING)								
Paper	50.1	41.2	78	1,284.9	66.5	784	127.8	46.8
Plastic	7.6	6.2	57	268	13.9	343	44.3	16.2

Note: For more detail see Appendix Tables A-7 and A-8.

67 percent of the trash can volume, and 47 percent of the landfill volume. Plastic products account for 14 percent of the trash can volume and 16 percent of the landfill volume. The only other major category on Table 7 is yard wastes at 6 percent of the trash can volume and 14 percent of the landfill volume.

An important calculation that can be made from Table 7 is the volume percent to weight percent ratio. For plastics, these are 2.2 in the trash can and 2.6 in the landfill (excluding durables).

Comments on Validity
There are several ways to assess the validity of these results. There are no other data that directly confirm or challenge these results, but there are related and derived data that show a general validity. Four of these are mentioned here.

Perhaps the best validation of the plastics values is The Garbage Project historical database. The most relevant measures are those published recently (17) for 14 samples taken from three landfills from the 1980 to 1984 time horizon. The average weight percent of plastics was 5.7 and the volume percent was 12.2 , leading to a landfill ratio of 2.1 . These samples contain no durables and the results compare well with our results of 6.2 percent by weight and 16 percent for volume for MSW (excluding durables) for 1986 (Table 7). Our values are higher, but because of the low number of samples for The Garbage Project data, these values appear to be in agreement within experimental ranges. In addition, the paper samples measured by The Garbage Project have an elevated moisture content. When corrections are made to exclude acquired moisture, the percent of paper drops and the percent of plastics rises. This brings these two databases even closer together.

Another validation is the overall density of MSW calculated from our sets of volume factors. Each volume factor (with few exceptions) is an experimentally-determined value, typically from more than one source. The entire set of factors was agreed upon by the project team before final calculations. The composite trash can density was 126 pounds per cubic yard, close to the "rule of thumb" of 100 pounds per cubic yard, and within the range of 100 to 150 pounds per cubic yard based on our own measurements. The calculated composite landfill density was 892 pounds per cubic yard. This is within the "rule of thumb" range of 800 to 1,000 pounds per cubic yard for modern landfills as discussed earlier.

We suggest that the overall validity of the composite values implies a probable validity of the carefully-derived individual factors. It is highly unlikely that the relationships between individual factors are greatly in error.

Finally, the Garbage Project report in Appendix B contains a statistical analysis of the landfill volume factors. This analysis shows the results of the landfill volume experiments to be reproducible at the 95 percent confidence level within approximately ± 20 percent of the average for each value. Combining these values into a composite yields a result with even greater confidence.

Although error analysis of a complex set of numbers with widely varying sources and accuracy is not straightforward, we believe that the results and conclusions presented in this study are accurate to better than ± 20 percent. For example, our volume percent to weight percent ratio for plastics in MSW (excluding durables) of 2.6 is between 2.0 and 3.0 , with the most probable value of 2.6 . In a similar fashion, the percent of volume occupied by plastics in the municipal waste stream (including durables) at the landfill is between 14 and 22 percent, with the most probable value being 18 percent.

SUMMARY AND OVERVIEW OF PACKAGING TRASH

Table 8 is a compilation of data from the preceding tables for the packaging component of solid waste. As can be seen, the traditional use of weight factors to characterize solid waste differs greatly from the volume perspective. The ratios of the volume percent to weight percent show this clearly. In trash cans, glass, metal, and other packaging (primarily wood), have ratios less than one, which means that they occupy little space in the trash cans. These three categories together account for 39 percent of the weight, but only 7 percent of the trash can volume. Paper clearly dominates the trash can volume, accounting for three-fourths of the total, with the very bulky nature of corrugated containers being a major factor. However, at the landfill, this changes markedly. Corrugated and other paper products become wet and compact much better than many other components, resulting in a lowering of volume percent to less than one-half.

The factors reported at the bottom of Table 8 show that packaging accounts for 65 percent of all MSW at the highly visible trash can level. The packaging fraction is markedly less at the landfill--42 percent by volume--but still is dominant.

SUMMARY AND OVERVIEW OF LIVING AREA TRASH

Table 9, which is similar to the previous table on packaging, summarizes the living area trash data. Living area trash accounts for 42 percent by weight of MSW (excluding durables), 46 percent by volume in the trash can, and one-half of MSW by volume in the landfill. Once again, two materials dominate--plastic and paper, but by weight there is four times

TABLE 8

SUMMARY OF VOLUME FACTORS

 FOR THE PACKAGING COMPONENTS OF MSW| | Weight \% Packaging Subtotal | Volume \% of Packaging Subtotal in Trash Cans | Trash Can Ratio (Volume\%) Weight\%) | Volume \% of Packaging Subtotal in Landfills | Landfill Ratio (Volume\%) Weight\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Glass | 25.0 | 2.6 | 0.1 | 6.6 | 0.3 |
| Metal | 8.9 | 5.3 | 0.6 | 14.6 | 1.6 |
| Paper and Paperboard | 47.7 | 74.6 | 1.6 | 46.4 | 1.0 |
| Plastics | 13.1 | 16.8 | 1.3 | 27.4 | 2.1 |
| Other Packaging | 5.3 | 0.7 | 0.1 | 5.0 | 0.9 |
| Total | 100 | 100 | | 100 | |

Packaging as a \% of Total MSW (excluding durables)
by weight 35\%
by trash can volume $\quad 65 \%$
by landfill volume $\quad 42 \%$
Note: Derived from Table 5.

TABLE 9
SUMMARY OF VOLUME FACTORS FOR
COMPONENTS OF MSW ORIGINATING IN LVING AREAS

more paper than plastic. Nondurable paper is a prominent component of paper and paperboard, consisting of relatively dense newspapers and other "flat" paper products. This leads to much lower trash can volumes and slightly lower landfill volumes than previously found for packaging. For paper, the volume fraction is reduced to about twice that of plastic in the landfill. The ratio of volume percent to weight percent for plastic is about 2 for both trash can and landfill locations. This is the largest ratio when compared to other materials, resulting from plastics' resistance to crushing.

SUMMARY AND OVERVIEW OF MSW (EXCLUDING DURABLES)

Table 10 summarizes volume factors for MSW, excluding durables. Paper accounts for 41 percent by weight, with food and yard wastes accounting for 34 percent. By weight, plastic is only 6.2 percent. However, plastic is 14 percent of trash can volume and 16 percent of landfill volume. Once again, the ratio of volume percent to weight percent is highest for plastics (2.6), but it still occupies far less landfill space than paper and paperboard products, only slightly more than yard wastes.

OVERVIEW OF MSW (INCLUDING DURABLES)

In order to develop a set of volume factors consistent with the EPA-FAL weight database for all municipal solid waste, which includes durable goods, the previous analysis was extended to include durables (e.g., appliances, furniture, tires). Durable goods account for about 20 million tons (14 percent) of the net discards of MSW each year.

Since no density factors are available for durables, we used known factors for similar products. Table A-8 was modified so that the glass, steel, aluminum, plastics, and other miscellaneous materials reflect the quantities of those materials in durables (Table A-9). These modifications are summarized in Table 11.

Comparing Table 11, which includes durables, with Table 10 reveals that the percentage of metals is up substantially, while paper drops as a percentage of the total. This, of course, is because durables have a high metal content, but contain very little paper. As a result of adding in durables, plastics increase to 18 percent by volume, with a volume percent to weight percent ratio of 2.5 .

TABLE 10
SUMMARY OF MSW VOLUME FACTORS (EXCLUDING DURABLES)

	Welght $\%$	Trash Can Volume $\%$	Ratlo (Volume\%/ Weight\%)	Landfill Volume $\%$	Ratio (Volume\%/ Weight\%)
	8.8	1.7	0.2	3	0.3
Glass	3.1	3.4	1.1	6	2.0
Metal	61.2	66.5	1.6	47	1.1
Paper and Paperboard	6.2	13.9	2.2	16	2.6
Plastics	23.3	5.9	0.3	6	0.3
Yard Wastes	10.3	2.6	0.3	3	0.3
Food	7.1	6.0	0.8	19	2.7
Other		100	100		100
Total					

*Includes wood, apparel, footwear and other miscellaneous materials.
Note: Derived from Table 7.

TABLE 11
SUMMARY OF MSW VOLUME FACTORS (INCLUDING DURABLES)

	Weight $(\%)$	Landfill Volume (\%)	Ratlo Volume\%/ Weight\%)
Glass	8.4	2	0.2
Metal	8.7	14	1.6
Paper and Paperboard	35.6	38	1.1
Plastics	7.3	18	2.5
Yard Wastes	20.1	11	0.6
Food	8.9	4	0.4
Apparel	1.3	3	1.9
Other*	9.7	10	1.0
Total	100.0	100	

- Includes wood, footwear and many other miscellaneous materials.

Note: Derived from Table A-9.

REFERENCES

1. Sellers, V.R. A Case study Analyzing the volume of Residential Plastics. Franklin Associates, Ltd. Prairie Village, Kansas. February 1989.
2. Rathje, W.L., et al. The Garbage Project. University of Arizona, Tucson. Various published and unpublished reports and personal communications.
3. Jones, T.A., et al. Recycling Markets and Management strategies for Connecticut. Yale School of Organization and Management for the Connecticut Resources Recovery Authority. August 1988.
4. Rankin, S. Recycling plastics in Municipal Solid Wastes. Center for Plastics Recycling Research at Rutgers. The State University of New Jersey. January 1989.
5. Hunt, R.G. and W.L. Bider. Analysis of Environmental and Economic Impacts of Waste Reduction Procedures and Policies. Franklin Associates, Ltd. for U.S. Environmental Protection Agency, Office of Solid Waste. Washington, DC. December 1977.
6. Fuller, E.E. and J. Schlegal. Excerpts from Plastic Packaging Recycling: The Challenges and Opportunities. Business Communications Company, Inc. Norwalk, Connecticut. 1988.
7. Conversation with Jeff Douglas, Waste Management, Inc. Chicago, Illinois.
8. "Transfer of Baled Wastes Is One Solution." Waste Age. December 1988.
9. Technical data on Seico and HRB balers.
10. Conversation with Richard Gamble. Gamble \& Associates. California.
11. Data from Waste Management, Inc.
12. Conversation with Harold Wilson. Can-Man Company. Manhattan, Kansas.
13. Conversation with representative of Empire Returns, Inc. Utica, New York.
14. Conversation with U.S. Recycling Industries. Denver, Colorado.
15. Franklin, M. Characterization of Municipal Solid Waste in the United States, 1960 to 2000 (Update 1988). Franklin Associates, Ltd. for the U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. April 1988.
16. Modern Plastics. January 1988 and earlier years.
17. Rathje, W.L., W.W. Hughes, G.H. Archer, D.C. Wilson, and E.S. Cassells. Digging in Landfills. The Garbage Project. University of Arizona, Tucson. Presented at the Fifth Annual Conference on Solid Waste Management and Materials Policy. New York City. January 1989.
18. Franklin Associates estimates based on experimental data.
19. Taylor, A.C. and R.M. Kashmanian. Study and Assessment of Eight Yard Waste Composting Programs Across the United states. U.S. Environmental Protection Agency. December 1988.
20. John Christopher Madole Associates. Yard Waste Management Action Plan for San Jose, California. Final Draft Report. March 1988.
21. Estimates only, no experimental data were found.
22. Appendix B, Table 20.
23. Appendix B, Table 21.

APPENDICES

The Appendices consist of three sections. Section A is a set of nine tables that form the database for the calculations in this report. Section B is a report on the experimental program prepared by The Garbage Project, University of Arizona. Section c is an explanation of the derivation of high interest segments of solid waste.

APPENDIX A

TABLE A-1
SUMMARY OF DENSITY FACTORS

	Trash Can Density (lb/cuyd)	References	Landfill Density (Ib/cuyd)	References
PACKAGING				
Glass Containers				
Beer \& soft drink	600	4,18	2,800	18,23
Other containers	700	4,18	2,800	18,23
Steel Containers				
Beer \& soft drink	150	4,18	557	23
Food cans	200	4,18	557	23
Other packaging	250	21	557	23
Aluminum				
Beer \& soft drink	60	4,18	250	4,18
Other packaging	45	21	550	21
Paper and Paperboard				
Corrugated	43	22	750	22
Other paperboard	42	22	819	22
Paper packaging	48	22	740	22
Plastics				
Film	84	22	667	22
Rigid containers	53	22	355	22
Other packaging	28	22	165	22
Wood Packaging	600	21	800	21
Other Misc. Packaging	203	21,22	1,014	22
NONPACKAGING Nondurable Paper				
Newspapers	170	22	798	22
Books, magazines	170	22	798	22
Nondurable Plastic	69	22	313	22
Rubber	170	21,23	343	23
Textiles	48	21,23	435	21,23
Food	500	21	2,000	23
Yard	500	19,20	1,500	19,20

TABLE A-2
DERIVATION OF LIVING AREA WASTE FROM THE MSW DATABASE

	Database (mil tons)	Fraction In Living Area	Living Area Waste (mil tons)
PACKAGING			
Glass Containers			
Beer \& soft drink	4.4	0.80	3.5
Other containers	6.3	0.85	5.4
Subtotal	10.7		8.9
Steel Containers			
Beer \& soft drink	0.1	0.80	0.1
Food cans	1.7	0.85	1.4
Other packaging	0.9	0.05	0.05
Subtotal	2.7		1.6
Aluminum			
Beer \& soft drink	0.7	0.80	0.6
Other packaging	0.4	0.90	0.4
Subtotal	1.1		0.9
Paper and Paperboard			
Corrugated	11.4	0.10	1.1
Other paperboard	5.1	0.60	3.1
Paper packaging	3.9	0.67	2.6
Subtotal	20.4		6.8
Plastics			
Film	2.0	0.75	1.5
Rigid containers	2.8	0.80	2.2
Other packaging	0.8	0.80	0.6
Subtotal	5.6		4.4
Wood Packaging	2.1	0.00	0.0
Other Misc. Packaging	0.2	0.70	0.1
Packaging Subtotal	42.8		22.7
NONDURABLE GOODS			
Paper			
Newspapers	8.8	0.92	8.1
Books, magazines	4.4	0.75	3.3
Office papers	5.0	0.10	0.5
Commercial printing	3.2	0.70	2.2
Other nonpackaging papers	- 8.3	0.46	3.8
Plastic	2.0	0.80	1.6
Apparel	1.8	0.50	0.9
Footwear	1.2	0.90	1.1
Other	0.8	0.80	0.6
Nondurable Goods Subtotal	35.5		22.2
DURABLE GOODS			
Major Appliances	2.6	0.00	0.0
Rubber Tires	1.7	0.00	0.0
Other Durables	14.9	0.00	0.0
Durable Goods Subtotal	19.2		0.0
OTHER WASTES			
Food	12.5	0.50	6.3
Yard	28.3	0.00	0.0
Misc. Inorganic	2.6	0.00	0.0
Other Wastes Subtotal	43.4		6.3
GRAND TOTAL	140.9		51.1

Note: Totals may not agree due to rounding.

TABLE A-3
VOLUME OF LIVING AREA WASTE IN TRASH CANS - 1986

	Weight	Trash Can	Trash Can	Volume \% of	Volume $\%$ of
Database	\% of	Density Volume	Total (mil tons)	Discards	(lb/cuyd)
(mil cuyd)	Discards	Materials			

PACKAGING						
Glass Containers						
Beer \& soft drink	3.5	6.8	600	11.7		
Other containers	5.4	10.6	700	15.4		
Subtotal	8.9	17.4		27.1	3.0	4.9
Steel Containers						
Beer \& soft drink	0.1	0.2	150	1.3		
Food cans	1.4	2.7	200	14.0		
Other packaging	0.1	0.2	250	0.4		
Subtotal	1.6	3.1		15.7	1.8	2.9
Aluminum						
Beer \& soft drink	0.6	1.2	60	20.0		
Other packaging	0.4	0.8	45	17.8		
Subtotal	1.0	2.0		37.8	4.2	6.9
Paper and Paperboard						
Corrugated	1.1	2.2	43	51.2		
Other paperboard	3.1	6.1	42	147.6		
Paper packaging	2.6	5.1	48	108.3		
Subtotal	6.8	13.3		307.1	34.5	55.8
Plastics						
Film	1.5	2.9	84	35.7		
Rigid containers	2.2	4.3	53	83.0		
Other packaging	0.6	1.2	28	42.9		
Subtotal	4.3	8.4		161.6	18.2	29.4
Misc. Packaging	0.1	0.2	203	1.0	0.1	0.2
Packaging Subtotal	22.7	44.4		550.3	61.8	100.0
NONPACKAGING Volume						
Nondurable Paper						\% of
Newspapers	8.1	15.9	170	95.3		Nonpackaging
Books, magazines	3.3	6.5	170	38.8		Materials
Office papers	0.5	1.0	170	5.9		
Commercial printing	2.2	4.3	170	25.9		
Other nonpkg paper	3.8	7.4	170	44.7		
Subtotal	17.9	35.1		210.6	23.7	62.0
Plastics	1.6	3.1	69	46.4	5.2	13.7
Apparel	0.9	1.8	48	37.5	4.2	11.0
Footwear, misc.	1.7	3.3	170	20.0	2.2	5.9
Food	6.3	12.3	500	25.2	2.8	7.4
Nonpackaging Subtotal	28.4	55.6		339.7	38.2	100.0
GRAND TOTAL	51.1	100.0		890.0	100.0	-
Average density Packaging density	$\begin{array}{r} 115 \\ 82 \end{array}$					

Packaging as a \% of Living Area Waste
Weight
44\%
Volume
62\%

TABLE A-4
VOLUME OF LIVING AREA WASTE IN LANDFILLS - 1986

	Database (mil tons)	$\begin{aligned} & \text { Weight } \\ & \% \text { of } \\ & \text { Discards } \end{aligned}$	Landfill Density (lb/cuyd)	Landfill Volume (mil cuyd)	Volume \% of Total Discards	Volume \% of Packaging Materials
PACKAGING						
Glass Containers						
Beer \& soft drink	3.5	6.8	2,800	2.5		
Other containers	5.4	10.6	2,800	3.9		
Subtotal	8.9	17.4		6.4	4.7	10.6
Steel Containers						
Beer \& soft drink	0.1	0.2	557	0.4		
Food cans	1.4	2.7	557	5.0		
Other packaging	0.1	0.2	557	0.4		
Subtotal	1.6	3.1		5.7	4.2	9.5
Aluminum 1.6						
Beer \& soft drink	0.6	1.2	250	4.8		
Other packaging	0.4	0.8	550	1.5		
Subtotal	1.0	2.0		6.3	4.6	10.4
Paper and Paperboard						
Corrugated	1.1	2.2	750	2.9		
Other paperboard	3.1	6.1	819	7.6		
Paper packaging	2.6	5.1	740	7.0		
Subtotal	6.8	13.3		17.5	12.9	29.1
Plastics						
Film	1.5	2.9	667	4.5		
Rigid containers	2.2	4.3	355	12.4		
Other packaging	0.6	1.2	165	7.3		
Subtotal	4.3	8.4		24.2	17.8	40.1
Misc. Packaging	0.1	0.2	1,014	0.2	0.1	0.3
Packaging Subtotal	22.7	44.4		60.2	44.4	100.0
NONPACKAGING Volume						
Nondurable Paper						\% of
Newspapers	8.1	15.9	798	20.3		Nonpackaging
Books, magazines	3.3	6.5	798	8.3		Materials
Office papers	0.5	1.0	798	1.3		
Commercial printing	2.2	4.3	798	5.5		
Other nonpkg paper	3.8	7.4	798	9.5		
Subtotal	17.9	35.0		44.9	33.1	59.5
Plastic	1.6	3.1	313	10.2	7.5	13.6
Apparel	0.9	1.8	435	4.1	3.0	5.5
Footwear, misc.	1.7	3.3	343	9.9	7.3	13.1
Food	6.3	12.3	2,000	6.3	4.6	8.4
Nonpackaging Subtotal	28.4	55.6		75.4	55.6	100.0
GRAND TOTAL	51.1	100.0		135.7	100.0	-
Average density	753 lb	cuyd				
Packaging density	754 lb	cuyd				
Packaging as a \% of Total Waste						
Weight	44\%					
Volume	44\%					

TABLE A-5

VOLUME OF HOUSEHOLD AND BUSINESS PACKAGING WASTE

 IN TRASH CANS - 1986| | Database (mil tons) | ```Weight % of Discards``` | Trash Can Density (lb/cuyd) | Trash Can Volume (mil cuyd) | Volume \% of Packaging Dlscards |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PACKAGING Glass Containers | | | | | |
| | | | | | |
| Beer \& soft drink | 4.4 | 10.3 | 600 | 14.7 | |
| Other containers | 6.3 | 14.7 | 700 | 18.0 | |
| Subtotal | 10.7 | 25.0 | | 32.7 | 2.6 |
| Steel Containers | | | | | |
| Beer \& soft drink | 0.1 | 0.2 | 150 | 1.3 | |
| Food cans | 1.7 | 4.0 | 200 | 17.0 | |
| Other packaging | 0.9 | 2.1 | 250 | 7.2 | |
| Subtotal | 2.7 | 6.3 | | 25.5 | 2.0 |
| Aluminum | | | | | |
| Beer \& soft drink | 0.7 | 1.6 | 60 | 23.3 | |
| Other packaging | 0.4 | 0.9 | 45 | 17.8 | |
| Subtotal | 1.1 | 2.6 | | 41.1 | 3.3 |
| Paper and Paperboard | | | | | |
| Corrugated | 11.4 | 26.6 | 43 | 530.2 | |
| Other paperboard | 5.1 | 11.9 | 42 | 242.9 | |
| Paper packaging | 3.9 | 9.1 | 48 | 162.5 | |
| Subtotal | 20.4 | 47.7 | | 935.6 | 74.6 |
| Plastics | | | | | |
| Film | 2.0 | 4.7 | 84 | 47.6 | |
| Rigid Containers | 2.8 | 6.5 | 53 | 105.7 | |
| Other packaging | 0.8 | 1.9 | 28 | 57.1 | |
| Subtotal | 5.6 | 13.1 | | 210.4 | 16.8 |
| Wood | 2.1 | 4.9 | 600 | 7.0 | 0.6 |
| Misc. Packaging | 0.2 | 0.5 | 203 | 2.0 | 0.2 |
| TOTAL | 42.8 | 100.0 | | 1,254.3 | 100.0 |
| Average density | 68 lb | cuyd | | | |
| Packaging as a \% of Total MSW (excluding durables) | | | | | |
| Weight | 35.2 \% | | | | |
| Volume | 65.5 \% | | | | |
| Ratio of volume \% to we | 1.9 | | | | |

TABLE A-6
VOLUME OF HOUSEHOLD AND BUSINESS PACKAGING WASTE IN LANDFILLS - 1986

	Database (mil tons)	$\begin{aligned} & \text { Weight } \\ & \text { \% of } \\ & \text { Discards } \end{aligned}$	Landfill Density (lb/cuyd)	Landfill Volume (mil cuyd)	Volume \% of Packaging Discards
PACKAGING Glass Containers					
Beer \& soft drink	4.4	10.3	2,800	3.1	
Other containers	6.3	14.7	2,800	4.5	
Subtotal	10.7	25.0		7.6	6.7
Steel Containers 6.7					
Beer \& soft drink	0.1	0.2	557	0.4	
Food cans	1.7	4.0	557	6.1	
Other packaging	0.9	2.1	557	3.2	
Subtotal	2.7	6.3		9.7	8.4
Aluminum 0.4					
Beer \& soft drink	0.7	1.6	250	5.6	
Other packaging	0.4	0.9	550	1.5	
Subtotal	1.1	2.6		7.1	6.1
Paper and Paperboard					
Corrugated	11.4	26.6	750	30.4	
Other paperboard	5.1	11.9	819	12.5	
Paper packaging	3.9	9.1	740	10.5	
Subtotal	20.4	47.7	.	53.4	46.5
Plastics					
Film	2.0	4.7	667	6.0	
Rigid containers	2.8	6.5	355	15.8	
Other packaging	0.8	1.9	165	9.7	
Subtotal	5.6	13.1		31.5	27.4
Wood	2.1	4.9	800	5.3	4.6
Misc. Packaging	0.2	0.5	1,014	0.4	0.3
TOTAL	42.8	100.0		114.9	100.0
Average density	745 lb	cuyd			
Packaging as a \% of Total MSW (excluding durables)					
Weight	35.2 \%				
Volume	40.8 \%				
Ratio of volume \% to w	1.2				

TABLE A-7

TRASH CAN VOLUME OF MSW - 1986 (EXCLUDING DURABLES)

	Discards (mil tons)	Weight (\% of total)	Trash Can Density (lb/cu yd)	Trash Can Volume (mil cu yd)	Volume (\% of total)
PACKAGING					
Glass Containers					
Beer \& soft drink	4.4		600	14.7	
Other containers	6.3		700	18.0	
Subtotal	10.7	8.8		32.7	1.7
Steel Containers					
Beer \& soft drink	0.1		150	1.3	
Food cans	1.7		200	17.0	
Other packaging	0.9		250	7.2	
Subtotal	2.7	2.2		25.5	1.3
Aluminum					
Beer and soft drink	0.7		60	23.3	
Other packaging	0.4		45	17.8	
Subtotal	1.1	0.9		41.1	2.1
Paper and Paperboard					
Corrugated	11.4		43	530.2	
Other paperboard	5.1		42	242.9	
Paper packaging	3.9		48	162.5	
Subtotal	20.4	16.8		935.6	48.4
Plastics					
Film	2.0		84	47.6	
Rigid containers	2.8		53	105.7	
Other packaging	0.8		28	57.1	
Subtotal	5.6	4.6		210.4	10.9
Wood Packaging	2.1	1.7	600	7.0	0.4
Other Misc. Packaging	0.2	0.2	203	2.0	0.1
Packaging Subtotal	42.8	35.2		1,254.3	64.9
NONDURABLE GOODS					
Paper					
Newspaper	8.8	7.2	170	103.5	5.4
Books and magazines	4.4	3.6	170	51.8	2.7
Office papers	5.0	4.1	170	58.8	3.0
Commercial printing	3.2	2.6	170	37.6	1.9
Other nonpackaging	8.3	6.8	170	97.6	5.1
Subtotal	29.7	24.4		349.4	18.1
Plastics	2.0	1.6	69	58.0	3.0
Apparel	1.8	1.5	48	75.0	3.9
Footwear	1.2	1.0	170	14.1	0.7
Other	0.8	0.7	100	16.0	0.8
Food	12.5	10.3	500	50.0	2.6
Yard	28.3	23.3	500	113:2	5.9
Misc. Inorganics	2.6	2.1	2,500	2.1	0.1
Nondurable Goods Subtotal	78.9	64.8		677.8	35.1
GRAND TOTAL	121.7	100.0		1,932.1	100.0
DENSITY	126 lb				
Packaging as a \% of Total Waste					
Weight	35.2 \%				
Volume	64.9 \%				
Paper totals	50.1	41.2		1,285	66.5
Plastic totals	7.6	6.2		268	13.9
Total (paper + plastic)	57.7	47.4		1,553	80.4
Volume \% to Weight \% Ratios Paper Plastics	s 1.6 				

Note: Paper totals are paper packaging + nondurable paper.
Plastic totals are plastic packaging + nondurable plastic.

TABLE A-8
VOLUME OF LANDFILLED MSW - 1986 (EXCLUDING DURABLES)

	Discards (mil tons)	Weight (\% of total)	Landfill Density (lb/cu yd)	Landfill Volume (mil cu yd)	Volume (\% of total)
PACKAGING					
Glass Containers					
Beer \& soft drink	4.4		2,800	3.1	
Other containers	6.3		2,800	4.5	
Subtotal	10.7	8.8		7.6	2.8
Steel Containers					
Beer \& soft drink	0.1		557	0.4	
Food cans	1.7		557	6.1	
Other packaging	0.9		557	3.2	
Subtotal	2.7	2.2		9.7	3.6
Aluminum					
Beer \& soft drink	0.7		250	5.6	
Other packaging	0.4		550	1.5	
Subtotal	1.1	0.9		7.1	2.6
Paper and Paperboard 2.6					
Corrugated	11.4		750	30.4	
Other paperboard	5.1		819	12.5	
Paper packaging	3.9		740	10.5	
Subtotal	20.4	16.8		53.4	19.6
Plastics 19.6					
Film	2.0		667	6.0	
Rigid containers	2.8		355	15.8	
Other packaging	0.8		165	9.7	
Subtotal	5.6	4.6		31.5	11.5
Wood Packaging	2.1	1.7	800	5.3	1.9
Misc. Packaging	0.2	0.2	1,014	0.4	0.1
Packaging Subtotal	42.8	35.2		114.9	42.1
NONDURABLE GOODS					
Paper					
Newspaper	8.8	7.2	798	22.1	8.1
Books and magazines	4.4	3.6	798	11.0	4.0
Office papers	5.0	4.1	798	12.5	4.6
Commercial printing	3.2	2.6	798	8.0	2.9
Other nonpackaging	8.3	6.8	798	20.8	7.6
Subtotal	29.7	24.4		74.4	27.3
Plastic	2.0	1.6	313	12.8	4.7
Apparel	1.8	1.5	435	8.3	3.0
Footwear	1.2	1.0	343	7.0	2.6
Other	0.8	0.7	500	3.2	1.2
Food	12.5	10.3	2,000	12.5	4.6
Yard	28.3	23.3	1,500	37.7	13.8
Misc. Inorganics	2.6	2.1	2,500	2.1	0.8
Nondurable Goods Subtotal	78.9	64.8		158.0	57.9
GRAND TOTAL	121.7	100.0		272.9	100.0
DENSITY	892 lb				
Packaging as a \% of Total Waste					
Weight	35.2 \%				
Volume	42.1 \%				
Paper totals	50.1	41.2		127.8	46.8
Plastics totals	7.6	6.2		44.2	16.2
Total (paper + plastic)	57.7	47.4		172.1	63.1
Volume \% to Weight \% Ratios					
Plastics	2.6				
Paper	1.1				

Note: Paper totals are paper packaging + nondurable paper.
Plastic totals are plastics packaging + nondurable plastics.

TABLE A-9
LANDFILL VOLUME OF MSW - 1986 (INCLUDING ESTIMATES FOR ALL WASTES)

	Discards (mil tons)	Weight (\% of total)	Landfill Density (lb/cu yd)	Landfill Volume (mil cu yd)	Volume (\% of total)
Glass					
Beer \& soft drink	4.4	3.1	2,800	3.1	0.9
Other glass (inc. durables)	7.4 +	5.3	2,800	5.3	1.6
Glass Subtotal	11.8	8.4		8.4	2.5
Steel					
Beer \& soft drink	0.1	0.1	557	0.4	0.1
Food cans	1.7	1.2	557	6.1	1.8
Other steel (inc. durables)	8.8 +	6.2	557	31.6	9.4
Steel Subtotal	10.6	7.5		38.1	11.3
Aluminum					
Beer \& soft drink	0.7	0.5	250	5.6	1.7
Other aluminum (inc. durables	S $1.0+$	0.7	550	3.6	1.1
Aluminum Subtotal	1.7	1.2		9.2	2.7
Paper and Paperboard					
Corrugated	11.4	8.1	750	30.4	9.0
Other paperboard	5.1	3.6	819	12.5	3.7
Paper packaging	3.9	2.8	740	10.5	3.1
Newspapers	8.8	6.2	798	22.1	6.5
Books and magazines	4.4	3.1	798	11.0	3.3
Office papers	5.0	3.6	798	12.5	3.7
Commercial printing	3.2	2.3	798	8.0	2.4
Other nonpackaging	8.3	5.9	798	20.8	6.2
Paper Subtotal	50.1	35.6		127.8	37.9
Plastics Packaging 007 127.8					
Film	2.0	1.4	667	6.0	1.8
Rigid containers	2.8	2.0	355	15.8	4.7
Other packaging	0.8	0.6	165	9.7	2.9
Other Plastic (inc. durables)	4.7 +	3.3	313	30.0	8.9
Plastic Subtotal	10.3	7.3		61.5	18.2
Wood (inc. durables)	$5.8+$	4.1	800	14.5	4.3
Other Misc. Packaging	0.2	0.1	1,014	0.4	0.1
Apparel	1.8	1.3	435	8.3	2.5
Footwear	1.2	0.9	343	7.0	2.1
Misc. Materials (inc. durables)	$3.9+$	2.8	800	9.8	2.9
Food	12.5	8.9	2,000	12.5	3.7
Yard	28.3	20.1	1,500	37.7	11.2
Misc. Inorganics	2.6	1.8	2,500	2.1	0.6
GRAND TOTAL	140.8	100.0		337.3	100.0
AVERAGE DENSITY	835 lb				
Volume \% to Weight \% Ratios					
Paper	1.1				
Plastics	2.5				

Note: "+" indicates values changed from Table 8 to reflect durables and other omitted categories.

APPENDIX B

COMPACIION EXPERTMEATS ON HRESH AND LANDEITL REMFUSE HROM tucson, ARIZONA

by

Douglas C. Wilson William L. Rathje Wilson W. Hughes

The Garbage Project Bureau of Applied Research in Anthropology University of Arizona

Tucson, Arizona
prepared for
Franklin Associates, Ltd.

October 17, 1989

TABLE OF CONTENTS

INTRODUCIION 1
MEIHODS 2
RESULTS 8
TABLES 12
FIGURES 33

INTRODUCTION

Refuse volume is an extremely important measure for solid wastes planning and management. Estimates of refuse volumes can provide critical information on (1) rates at which landfills are filling up, (2) efficacy of recycling programs in increasing landfill use-life (through reducing the landfilled wastestream), and (3) changes in refuse volume through time as biodegradation affects the characteristics of the landfilled wastes. Unfortunately, it has been very difficult to get accurate figures on the volume of various categories of refuse--both for fresh refuse as it is deposited at the landfill and landfill refuse which has undergone the effects of several years of deposition. Because most studies of solid waste characteristics have measured weight and not volume, knowledge of the volume and density of solid wastes are, at best, lightly treated or ignored. In addition, little is known of the effects of natural and cultural deposition processes on the behavior of materials in the landfill (as compared to fresh refuse collected from off the street). For example, residential refuse is often (but not always) compacted in garbage trucks prior to deposition. Different types of trucks have different characteristics of compaction. In addition, the characteristics of compacting and covering at the landfill face might produce significant effects on the volume characteristics of the materials. After burial, natural biodegradation and possibly mechanical breakdown of materials might also alter the volume characteristics of the landfilled materials.

This study presents the first attempt to examine two types of refusefresh residential refuse from Tucson, Arizona and landfilled refuse (primarily of residential origin) from the Los Reales landfill in Tucson, Arizona--
specifically to study the volume of the refuse as it is related to variability in compaction pressures.

MEIMODS

A total of 1,666 pounds (4,248 gallons) of refuse were collected and compacted between May and June of 1989: 559 pounds (2,448 gallons) fresh refuse and 1,107 pounds (1,800 gallons) of landfill refuse.

Fresh Refuse Sampling

Fresh household refuse samples were for the most part collected from two census tracts in Tucson, Arizona: one low income census tract of mixed ethnicity located near the downtown area (tract 10) and one moderate income, primarily anglo tract located to the northeast of the downtown area (tract 6). All refuse samples were brought to the analysis site on the campus of the University of Arizona and the materials hand-segregated into nine paper, plastic, and composite fractions. Sampling was performed by the City of Tucson Department of Sanitation. All non-paper and non-plastic materials were discarded. The nine categories used for the separation were (1) Non-packaging Paper, (2) Corrugated Cardboard Packaging, (3) Paperboard Boxes, (4) Other Packaging Paper and Paperboard, (5) Plastic Film Packaging, (6) Plastic Rigid Packaging Containers, (7) Other Plastic Packaging, (8) Non-packaging Plastic, and (9) Composite/Mixtures (see Form 1). In addition, a few samples of aluminum cans were prepared for comparative purposes. Preparation consisted of filling plastic sample bags with between 20 and 30 gallons of a waste category, cutting holes in the bag to facilitate compaction, and tagging the sample with a material code (A through I--see Form 1) and sample number. Samples were prepared on May 9, 11, and 17.

Landfill Excavation

Landfill refuse sampling started on June 13, 1989 at the Los Reales Landfill, Tucson, Arizona. Sampling was facilitated by the City of Tucson Department of Sanitation. Samples were taken in two manners: (1) large sized pieces of paper and plastic were gleaned from the debris brought up by a backhoe bucket along the sides of backhoe trenches; (2) backhoe loads were shoveled onto a one inch by two inch mesh screen and the paper and plastic fractions collected. Initial samples were composed of mixed residential and commercial refuse-deposits of corrugated cardboard and office paper were mixed with deposits of residential refuse (newsprint, food wastes, yard trimmings, junk mail, etc.). Initial date of deposition of these deposits (based on reading the dates printed on newspapers) was March 1986. In the early afternoon the trench was extended to the west to avoid a deposit of medical waste (syringes, etc.). Dates on this refuse indicated a deposition period in 1983 although lower deposits dated to 1979. The 1983 refuse was darker in color, moister, and appeared to be more decomposed. In the late afternoon of June 13 the trench was extended to the east where medical wastes and mixed commercial/residential refuse was encountered and sampled.

The second day of landfill refuse sampling occurred on June 20, 1989 at the Los Reales landfill. In the morning, samples were taken from a trench to the southwest of the June 13 trench. Initial samples dated to 1983. By midmorning the trench was extended to the west to avoid large deposits of commercial refuse on the east end of the trench. Upper levels of the trench (down to about 5 feet) were mixed residential and commercial refuse dating to 1983, while lower levels (lower than 5 feet to at least 9 feet) were 1977-1978
residential refuse. In the early afternoon, in order to avoid demolition and construction debris deposits in the west end of the trench, a new trench was started to the east of the existing trench (but still west of the June 13 trench).

The third day of landfill refuse sampling occurred on June 27, 1989 at the old Tempe landfill site underneath the Rio Salado parkway. Three additional samples of refuse were gleaned from backhoe piles of refuse dated to 1967-1971.

In summary, landfill refuse was collected from largely residential solid wastes dating to 1983 from the Los Reales landfill in Tucson, Arizona. Some commercial refuse was mixed in with a number of the samples. Three samples of late 1960 s residential refuse were included from the Rio Salado landfill, Tempe, Arizona. Samples were prepared as described above for fresh refuse on June 14, 15,21 , and 30.

Compactor

The compactor used in the refuse experiments was provided by Mobil Chemical company. The compactor was composed of a box-shaped cylinder with a hydraulic piston. Refuse was put into the cylinder and the piston was lowered. Measurements were taken of changes in the volume of the refuse under various pressures.

The cylinder was composed of four curved metal plates on a metal footing. Each metal plate formed one side of the cylinder with the edges overlapping forming a nearly square aperture in the basic "open" configuration. Small hydraulic pistons were attached to the outside of each plate which permitted the plates to be contracted into a "closed" mode. In the closed configuration the cylinder was completely round on top. In the open mode, a wood and metal plate, fitted to the cylinder aperture, was placed on top of the refuse. In the closed
mode the metal plate of the piston (a "Miller Fluid Power" hydraulic piston, model "B+61R2N" (250 psi, 6" bore, 1.75" rod diameter, 30 stroke) was used to directly depress the refuse. All compaction experiments for this report were concuucted in the open mode. A tape was attached to the bottom of the piston's metal plate which was used to measure the distance from the bottom of the cylinder to the bottom of the piston. A "Span Instruments" pressure gauge was used to measure the pressure in the line immediately prior to entry on the piston ($0-100 \mathrm{psi}$). A rented air compressor was used to drive the piston. Recorded Variables

The following variables were recorded for each refuse sample (see Form 2):

1. Material. This was one of 9 types specified by Franklin Associates for the study (see Form 1). In addition some additional samples (aluminum for example) were also recorded.
2. Number. The number of the sample. In general, a target of 10 samples per material was specified. In some cases, due to the infrequency with which certain materials were discarded, less than this number were procured. In some cases, due to potential biasing factors involved with compaction runs (eg. insufficient holes in sample bags to permit air escape during compaction), additional samples were analyzed.
3. Weight. The weight of the sample was measured on an "Ohaus" electronic scale to the hundredth of a pound.
4. Plate. The condition of the cylinder was recorded--either "open" or "closed" mode.
5. Type. The type of refuse, either fresh refuse or refuse excavated from a landfill, was recorded.
6. Year. The year the refuse was generated was recorced--the present year
for fresh refuse, or the year of the landfilled refuse (as recorded from stillreadable newsprint dates).
7. Bin Volume. The volume of the refuse sample was measured using the standard Garbage Project technique of measurement within a marked 32 or 20 gallon plastic garbage can (or "bin"). Measurement was in gallons and precise to the gallon.
8. Compactor Volume 1. Four measurements were made of the volume of the refuse sample in the compactor. Measurements were taken using a metal ruler thrust into each corner of the cylinder and measuring up to the refuse. Measurements were precise to the nearest inch and were converted to volume by multiplying the average of the four measurements by the area of the cylinder.
9. Compactor Volume 2. Four additional measurements were made of the volume of the refuse sample in the compactor after the placement of the wood and metal plate on top of the refuse (the plate exerted 0.0504 psi on the refuseonly measured in open mode). These were taken in an identical manner to the Compactor Volume 1. Measurements were taken to the top of the plate and were precise to the eighth of an inch. Volume was derived by subtracting the width of the plate from the average of the measurements and multiplying this number by the area of the cylinder.
10. Compactor Measurements. The distance that the refuse had compacted was measured from the tape on the piston at 21 specific points: contact of the piston with the refuse (2 psi), 5 psi to 100 psi in 5 psi increments (read off of the pressure gauge, and at 100 psi after a 30 second delay.
11. Compactor Volume 3. Four measurements of the volume of the refuse sample after the piston had been withdrawn from the cylinder. Measurements were
taken in a fashion identical to Compactor Volume 2 (the metal and wooden plate was left in place). This measurement recorded the "springback" of the material after pressure had been released (see Form 2).

Procedure

Three persons recorded the variables-a person to control the piston movement, a person to read off the distance measurements, and a person to record: After measuring weight and "Bin Volume", the samples were placed in the compactor and "Compactor Volume 1" was measured. In the open mode, the wood and metal plate was then placed on the refuse and "Compactor Volume 2" was measured. The piston would then be lowered onto the refuse. On contact with the refuse, the distance would be measured (this was given the value of 2 psi) and then at 5 psi intervals. The person controlling the piston would call off the pressure and the person reading the tape would respond by calling off the distance. These were written on the form by the recorder. After 100 psi had been reached the pressure was held for 30 seconds and a further measurement taken. The piston was rescinded and the "springback" volume was recorded. Compaction experiments on the fresh refuse samples were conducted on May 9, 11, 16, and 17 while experiments on the landfill refuse samples were conducted on June $14,15,22$, and 30.

Analysis

The measurements were input into a spreadsheet program pre-set to convert the raw data into the reporting units. Using the recorded weight of the sample, volumes recorded at various pressures were converted into densities (in pounds per cubic yard). The resultant data are presented in Tables 1-19 and Figures 118. Each table is composed of a colum with the pressure in psi, a set of columns-one for each sample, numbered 1 to n--with densities, and some summary
statistics colums (mean, standard deviation, n, and the coefficient of variation). In the pressure column, the measurements "bin voll" refers to the Garbage Project's volume measuring method (see 'Compactor", above), "com1" is the initial volume measurement.

RESULTS

Results concern sampling, comparison of fresh and landfill samples, and variability within refuse categories.

Sampling

The least frequently found categories (those where less than 10 samples could be procured were the other plastic packaging, non-packaging plastic, and composite/mixtures categories for fresh refuse. In the landfill refuse these three categories were also infrequently found, as well as, other packaging paper and paperboard boxes categories.

Comparison of Fresh and Landfill Refuse Samples

In all cases except for the other plastic packaging category the average coefficient of variation (the average of the standard deviations divided by the averages) for the fresh refuse samples were greater than the landfill refuse. This suggests that for all of the categories except other packaging plastic the amount of variability within measurements with respect to the average was less for the landfill refuse. The most dramatic differences were for non-packaging paper, corrugated cardboard, rigid plastic packaging, and composite/mixtures. This suggests that there are significant differences between landfill and fresh refuse. It is likely that processes of refuse deposition, waste degradation, and others have altered the characteristics of the materials. The resultant material mix acts somewhat more regularly (see variability, below). It is
possible that the materials have lost some of their resilience through time, such that resistance to pressure is decreased.

Clearly the landfill refuse is considerably denser regardless of the pressure applied. Part of the reason for this is probably elevated moisture levels in the landfill refuse, but part of the difference is likely the reduction in particle size of the refuse pieces through refuse truck compaction, landfill compaction, and degradation of the materials. For example, most of the paperboard boxes and rigid plastic containers found in the landfills were crushed (compared to the fresh refuse boxes and containers which were invariably whole). The categories showing the least dramatic increases in density from fresh refuse to landfill refuse were the plastics categories--especially plastic film packaging, other plastic packaging, and non-packaging plastic. This suggests the possible role of permeability (and moisture content) in altering the compaction characteristics of the materials-such that more permeable materials-paper--become more dense (with increasing moisture). In addition, it may suggest greater structural breakdown of paper elements such that particle size has decreased for these categories (increasing density).

Variability

Variability within refuse categories affects the confidence with which sample statistics may be applied to produce estimates for trash can and landfill densities.

Trash Can Densities. In nearly every category of fresh refuse there was at least one outlier sample whose compaction curve did not cluster with the other samples (see Figures 1 to 10). For example, samples 1, 2, and 8 for the fresh refuse non-packaging paper were low density outliers. In the case of nonpackaging paper, sample 1 was predominantly newsprint while sample 8 was
primarily wallpaper. It is quite possible that some of the newsprint and the wallpaper were crumpled (exhibiting low densities) as some of these kinds of materials were noticed during the sample preparation. It is probable that (1) composition of the category (the specific mix of products, packaging, and other items) and (2) condition of the materials (crumpled, crushed, moist) affected how the materials behaved under pressure.

The lowest deviations with respect to the average (coefficient of variation) were paperboard boxes, other packaging, film plastic, other plastic, non-packaging paper. Aluminum had extremely low deviations. The highest densities achieved at maximum pressure for fresh refuse were film plastic (619.1 Lbs/cu yd) and composite/mixtures ($647.4 \mathrm{Lbs} / \mathrm{cu} \mathrm{yd}$). The least dense (as expected) were the aluminum can samples ($98.6 \mathrm{Lbs} / \mathrm{cu} \mathrm{yd}$).

Averages for low pressure (0.434 psi), fresh refuse densities with the 95 percent confidence intervals are listed in Table 20. The highest density materials were the composite/mixtures category (mostly diapers-202 Lbs. per cu. yd.), non-packaging paper (85 Lbs. per cu. yd), and plastic film packaging (84 Lbs. per cu. yd.). The least dense material was other plastic packaging (28 Lbs. per cu. yd.).

Landfill Pressure Densities. In contrast to the fresh refuse samples, there were very few outliers in the landfill sample distributions (see Figures 11-18). Averages for estimated landfill pressures (8.683 psi held for 30 seconds) and the 95 percent confidence intervals for the average are listed in Table 20. The most dense material was (once again) the composite/mixtures category (1014 Lbs . per cu. yd.). Paper categories were considerably more dense than plastic categories, film plastic (667 Lbs . per cu. yd.) the only plastic category even close in density to the lowest paper category (other packaging

TABTE 1

GRESG RPFUSE MOF-PACKAGING PAPER EXPERTMENYS

SAFPLE RMMBER										
I	1	2	3	4	5	6	7	0	S	10
(PCUNDS PER CUBIC YARD)										
bin woll	9.445	20.152	131.0771	90. $\hat{0} \mathbf{0} 2$	105.925	152.730	136.154	17.381	142.451	132.627
cal	10.591	25.775	166.324	142.337	137.417	230.900	193.191	17.157	161.701	152.455
com2	17.542	36.304	195.916	162.671	154.762	241.267	205.642	21.330	179.047	176.792
0.174	17.243	34.047	193.333	142.399	155.776	239.313	200.230	19.306	166.381.	163.306
0.434	33.314	48.476	260.125	184.100	210.255	274.932	230.032	25.561	209.492	206.554
0.666	73.007	71.070	325.860	214.793	235.012	345.675	270.258	41.812	262.757	242.090
1.302	87.983	86.120	354.025	227.739	359.595	367.145	311.050	56.860	309.647	275.291
1.737	110.680	103.101	383.217	276.980	405.017	391.450	331.928	62.511	342.679	310.812
2.179	127.085	116.193	395.879	316.956	\$22.620	419.223	360.399	66.459	377.697	332.247
2.605	149.108	155.748	409.414	353.386	442.260	437.655	402.088	72.571	413.355	356.05\%
3.639	149.188	197.343	416.534	399.282	463.574	458.220	445.558	79.920	434.827	373.456
3.473	163.397	252.420	431.544	433.024	467.046	460.572	462.214	86.488	457.946	391.674
3.307	130.596	271.118	439.462	458.877	499.697	496.726	480.164	91.502	474.720	418.921
4.342	201.343	271.118	447.676	406.012	513.022	514.003	499.565	94.234	483.593	441.981
4.776	201.843	292.807	456.204	504.012	527.076	532.526	520.599	103.502	492.804	458.818
5.210	228.755	232.807	465.062	521.097	541.325	552.434	543.483	107.011	512.322	476.969
5.644	228.755	292.307	474.271	539.381	541.325	562.956	555.696	110.766	522.671	496.659
6.076	263.949	318.268	474.271	556.995	557.633	573.887	568.470	114.794	533.448	507.115
6.512	263.949	316. 268	483.852	580.089	574.278	585.251	595.666	119.125	556.392	518.020
8.946	263.949	318.268	483.852	580.089	574.278	597.075	610.579	123.797	556.392	529.405
7.381	311.939	346.580	493.029	602.838	591.349	509.386	626.037	126.850	566.621	523.405
7.815	311.333	348.580	493.829	602.838	591.943	609.386	626.037	134.333	581.399	541.302
0.243	311.939	340.500	504.225	627.443	610.741	622.215	626.037	134.333	581.398	553.748
6.683	311.939	340.580	504.225	827.443	610.741	522.215	842.298	140.303	594.754	553.748
0.683	311.333	340.580	515.069	554.143	630.765	635.598	659.428	145.823	606.758	566.775
SPRIMGACM	152.504	252.420	405.344	468.194	475.020	503.057	526.137	110.766	451.977	439.962

STANCASD
AVERAGE DEVIATION N N

94.902	50.114	10	0.612
123.785	77.345	10	0.630
140.392	32.316	10	0.566
133.254	30.467	10	0.504
170.484	97.706	10	0.573
215.254	112.308	10	0.522
243.647	122.549	10	0.503
271.836	130.334	10	0.479
293.556	136.376	10	0.465
319.333	136.341	10	0.433
341.640	143.022	10	0.416
354.630	144.141	10	0.395
331.176	146.463	10	0.364
395.505	150.415	10	0.330

$409.049 \quad 153.536 \quad 10 \quad 0.375$
$424.188 \quad 157.132 \quad 10 \quad 0.370$
$\begin{array}{llll}432.589 & 161.208 & 10 & 0.373\end{array}$
$447.083 \quad 159.133 \quad 10 \quad 0.356$
$459.509 \quad 166.524 \quad 10 \quad 0.362$
$463.769 \quad 168.337 \quad 10 \quad 0.363$
$461.143 \quad 164.366 \quad 10 \quad 0.343$
$434.159 \quad 164.507 \quad 10 \quad 0.341$
$\begin{array}{lllll}492.056 & 170.045 & 10 & 0.346\end{array}$
$435.525 \quad 170.585 \quad 10 \quad 0.345$
$\begin{array}{llll}507.766 & 177.512 & 10 & 0.350\end{array}$
$378.593 \quad 150.277 \quad 10 \quad 0.397$ Average CV: 0.435

TABTE 2
GRESE REWIUSE CORRUGAIED CARDBOARD PACKAGING EXPERTMENIS

SAMPLE MNGER											STANDARD				
PSI	1	2	3	4	5	6	7	8	9	10	11	AVERAGE	deviation	N	CV
(PCUNDS PER CUBIC YARD)															
bin voll	21.227	29.624	47.484	37.534	89.426	36.841	26.072	22.545	31.740	30.102		37.259	19.902	10	0.534
cam1	22.590	22.123	65.334	32.155	75.193	30.977	28.873	17.650	29.715	26.800		35.141	19.187	10	0.546
comp	25.817	25.283	70.545	42.874	76.152	. 36.119	34.128	22.940	40.242	27.032		40.114	18.784	10	0.468
0.174	24.504	21.625	61.821	31.057	73.994	32.880	32.103	21.839	37.072	26.866		36.376	17.582	10	0.483
0.434	29.266	25.572	74.667	34.869	86.622	35.588	40.998	26.333	43.838	29.159		42.701	21.058	10	0.493
0.868	38.655	33.130	84.966	36.357	99.337	44.165	46.653	39.563	48.240	37.066		50.813	22.544	10	0.444
1.302	43.285	33.796	93.233	51.840	116.427	53.316	51.751	52.162	53.625	45.751		59.519	25.247	10	0.424
1.737	53:546	53.803	100.866	58.016	140.620 .	54.179	66.227	65.581	69.038	57.855		72.073	27.885	10	0.387
2.171	60.745	77.304	114.226	59.536	194.511	55.528	75.764	81.084	76.353	68.770		86.382	41.407	10	0.479
2.605	63.971	110.253	118.953	67.830	292.642	60.010	91.946	98.668	81.768	83.470		106.951	68.066	10	0.636
3.039	67.558	149.454	122.327	72.137	349.282	67.247	106.410	101.104	84.155	93.457		121.313	84.183	10	0.694
3.473	83.088	164.034	125.899	74.502	391.365	73.127	116.919	103.664	86.688	100.317		131.960	95.211	10	0.722
3.907	101.812	172.446	131.665	85.747	421.861	99.127	129.733	122.230	92.234	104.138		146.099	100.142	10	0.685
4.342	111.210	181.768	135.812	94.026	457.511	129.924	141.350	148.899	157.935	110.450		166.889	105.233	10	0.631
4.776	122.520	203.800	149.984	99.517	484.825	137.961	145.700	167.131	235.291	117.575		186.430	112.456	10	0.603
5.210	131.430	216.949	161.198	104.075	515.607	140.865	155.254	181.988	268.123	122.860		199.835	120.977	10	0.605
5.544	153.802	231.911	174.224	107.353	532.513	153.818	201.499	199.743	281.202	128.641		216.470	122.053	10	0.564
6.078	168.109	249.089	177.816	112.676	569.882	199.734	220.244	209.986	295.622	134.994		233.815	129.444	10	0.554
6.512	176.309	249.089	181.560	149.822	590.605	212.416	230.987	221.336	295.622	142.007		244.975	130.064	10	0.531
6.946	185.351	249.089	189.540	156.711	636.927.	219.380	242.833	233.984	311.602	149.788		257.520	141.723	10	0.550
7.381	185.351	249.089	198.255	160.398	662.924	226.817	255.959	248.165	311.602	154.007		265.257	147.818	10	0.557
7.815	206.533	269.016	207.809	168.319	691.133	234.775	270.585	264.176	311.602	163.202		278.715	152.476	10	0.547
8.249	206.533	269.016	218.331	177.063	721.850	243.313	270.585	264.176	329.408	168.223		286.850	160.312	10	0.559
8.683	206.533	269.016	224.002	181.784	755.425	243.313	286.984	282.395	329.408	173.564		295.242	169.042	10	0.573
8.883	219.051	292.409	236.276	197.592	792.275	262.396	305.499	303.313	349.372	191.833		315.002	175.384	10	0.557
SPRIMGEACK	150.597	188.563	185.464	183.415	523.924	181.559	220.244	209.986	256.206	151.868		225.192	109.524	10	0.486
														$\mathrm{CV}=$	0.551

TABLE 3
FRESH REFUSE PAPERBOARD BOXES

TABTE 4
ERESH FPGFUSE OIHER PACKAGING PAPER AND PAPERBOARD EXPERTMENIS

SAPPLE NMPCR				4	5	6	7	8	9	10	11	STANDARD		N	CV
PSI	1	2	3									AVERAGE	deviation		
(PONNDS PER CUBIC YARD)															
bin voll	21.630	21.160	17.759	21.412	25.442	20.908	35.544	34.837	29.068	21.764	22.545	24.725	5.888	11	0.238
coml	23.915	23.013	21.503	21.847	25.671	25.316	42.038	34.565	30.586	28.505	22.438	27.224	6.364	11	0.234
com2	33.866	29.966	28.671	27.483	36.529	33.679	55.096	46.859	43.295	40.501	30.388	36.939	8.664	11	0.235
0.174	28.007	29.225	24.528	26.365	35.140	32.877	52.419	42.649	41.402	38.805	29.353	34.616	8.477	11	0.245
0.434	37.015	38.524	47.784	33.670	55.340	45.477	70.752	54.466	54.717	47.817	44.751	48.219	10.435	11	0.216
0.868	54.562	60.521	62.630	57.612	77.661	63.821	125.704	83.322	80.657	54.901	73.779	72.288	20.522	11	0.284
1.302	66.360	92.505	75.893	81.870	93.351	78.296	205.517	127.086	98.097	60.258	103.664	98.454	40.061	11	0.407
1.737	80.944	122.003	90.858	103.702	111.346	91.502	253.874	163.397	137.832	78.018	134.253	124.339	50.412	11	0.405
2.171	100.903	150.709	105.752	119.657	130.165	104.037	301.106	193.562	178.504	117.646	160.577	151.147	58.722	11	0.389
2.605	120.753	170.804	117.289	131.825	146.694	128.723	331.989	213.247	205.448	172.365	190.452	175.417	61.949	11	0.353
3.039	129.227	187.468	131.651	141.412	162.135	148.915	. 369.930	228.755	241.972	200.316	221.336	198.647.	70.078	11	0.356
3.473	138.980	207.735	143.353	146.749	196.632	185.236	392.350	256.766	265.579	239.086	248.165	220.057	73.485	11	0.334
3.907	144.430	247.941	157.339	158.728	214.924	205.262	417.563	279.590	294.291	274.508	254.176	241.714	78.925	11	0.327
4.342	150.325	265.041	165.408	165.483	236.967	244.990	446.467	292.594	329.962	296.467	282.395	261.463	85.572	11	0.327
4.776	237.610	265.041	184.311	180.876	264.049	261.885	479.539	306.867	351.250	322.247	303.313	286.999	83.059	11	0.289
5.210	253.997	284.673	195.482	199.428	280.052	281.284	479.539	340.042	375.474	322.247	303.313	301.412	80.098	11	0.266
5.644	272.812	334.182	208.094	210.208	298.120	303.787	517.902	359.473	403.287	352.937	327.578	326.216	87.249	11	0.267
6.078	237.610	334.182	222.445	235.687	318.580	303.787	517.902	381.259	403.287	352.937	356.063	333.076	86.162	11	0.259
6.512	253.997	334.182	222.445	250.893	342.286	330.203	562.937	405.856	435.550	390.088	356.063	353.136	96.606	1	0.274
6.946	272.812	366.009	238.922	268.196	369.669	330.203	562.937	433.846	473.424	390.088	389.973	372.371	95.566	11	0.257
7.381	294.637	366.009	258.036	288.062	369.669	330.203	562.937	433.846	473.424	435.981	389.973	382.071	90.375	11	0.237
7.815	320.258	404.536	258.036	288.062	401.814	361.651	562.937	465.983	473.424	435.981	431.023	400.337	88.931	11	0.222
8.249	320.258	404.536	258.036	311.107	401.814	361.651	562.937	465.983	473.424	435.981	431.023	402.432	86.252	11	0.214
8.683	320.258	404.536	280.474	311.107	401.814	361.651	616.550	465.983	518.512	494.112	431.023	418.729	100.646	11	0.240
8.683	350.758	452.128	280.474	338.160	401.814	399.720	616.550	503.262	518.512	494.112	481.732	439.748	96.445	11	0.219
SPRINGBACX	219.878	269.691	157.339	243.053	253.198	244.990	438.900	354.410	382.062	380.086	345.033	299.058	85.826	11	0.287
															0.284

TABLE 5
FRESH REETUSE PLASTIC FIIM PACKAGING EXPERTMENIS

SAMPLE MMEER														
PSI	1	2	3	4	5	6	7	8	9	10	Average	deviation	N	CV
(PCUNDS PER CUBIC YARD)														
n voll	37.785	22.923	28.751	22.033	20.282	28.213	28.087	20.152	10.832	13.981	23.304	7.815	10	0.335
coml	37.297	33.042	34.967	29.309	24.112	32.584	39.240	28.594	20.074	18.949	29.817	6.965	10	0.234
can2	59.034	56.072	54.242	64.683	46.801	47.097	95.798	57.669	50.443	39.215	57.105	15.415	10	0.270
0.174	55.568	49.860	53.501	63.052	39.001	45.381	75.574	57.669	45.225	37.518	52.245	11.521	10	0.221
0.434	75.002	87.649	82.275	105.679	82.036	61.251	117.270	86.869	91.502	49.305	83.884	19.518	10	0.234
0.868	115.339	151.394	155.408	242.038	145.657	108.825	200.049	221.378	207.084	163.818	171.099	44.740	10	0.261
1.302	193.314	203.050	227.691	300.127	183.004	157.873	217.074	298.377	262.306	241.827	228.469	47.617	10	0.208
1.737	240.795	268.603	279.735	326.225	246.109	219.785	226.722	361.193	262.306	298.728	273.020	44.951	10	0.165
2.171	292.028	333.058	315.830	357.294	285.487	260.675	237.267	361.193	262.306	338.558	304.371	43.261	10	0.142
2.605	334.764	362.030	362.620	394.904	339.865	302.946	237.267	403.585	302.651	338.558	337.930	48.734	10	0.144
3.039	351.931	396.509	391.529	394.904	375.540	339.667	237.267	403.586	302.661	390.644	358.454	53.176	10	0.148
3.473	442.752	396.509	425.684	394.904	375.640	361.581	248.841	457.511	357.690	461.670	392.278	83.024	10	0.161
3.907	473.287	396.509	425.684	441.363	419.833	386.518	248.841	527.897	357.690	461.670	413.929	75.416	10	0.182
4.342	508.345	438.247	466.225	441.363	475.811	415.149	248.841	527.897	357.690	461.670	434.124	80.575	10	0.186
4.776	508.345	489.806	466.225	500.212	475.811	448.361	248.841	623.878	357.690	461.670	458.084	98.401	10	0.215
5.210	549.013	489.806	515.302	500.212	475.811	448.361	248.841	623.878	437.177	564.263	485.266	100.180	10	0.206
5.644	549.013	555.113	515.302	500.212	549.013	487.348	248.841	623.878	437.177	564.263	503.016	102.550	10	0.204
6.078	596.753	555.113	575.925	500.212	549.013	487.348	248.841	623.878	437.177	564.263	513.852	108.172	10	0.211
6.512	596.753	555.113	575.925	500.212	549.013	487.348	248.841	623.878	437.177	564.263	513.852	108.172	10	0.211
6.945	596.753	640.515	575.925	577.167	549.013	533.763	248.841	623.878	437.177	564.263	534.730	114.898	10	0.215
7.381	653.587	640.515	575.925	577.167	549.013	533.763	248.841	623.878	437.177	564.263	540.413	119.613	10	0.221
7.815	653.587	640.515	575.925	577.167	648.834	533.763	261.602	623.878	437.177	564.263	551.671	121.061	10	0.219
8.249	653.587	540.515	652.715	577.167	648.834	533.763	261.602	623.878	437.177	564.263	559.350	125.137	10	0.224
8.683	653.587	640.515	652.715	577.167	648.834	589.948	261.602	623.878	562.085	725.481	593.581	125.877	10	0.212
8.683	653.587	756.372	652.715	577.187	648.834	589.948	261.602	762.518	562.085	725.481	619.091	144.438	10	0.233
NGBACK	249.551	264.340	241.746	230.867	254.899	221.961	237.267	392.152	262.305	236.203	259.129	48.680	10	0.188
														0.210

TABLE 6
FRESEI REFUSE PLASIIC RIGID PACKAGING CONTAINERS EXPERTMENIS

SAMPLE NUMBER											STANDARD			
PSI	1	2	3	4	5	δ	7	8	9	10	AVERAGE	deviation	N	CV
(PONOS PER CUBIC YARD)														
bin voll	41.438	43.358	41.186	36.778	45.972	43.969	44.209	103.658	35.896	45.469	48.193	19.782	10	0.410
coml	40.032	40.202	34.001	35.156	43.487	40.369	38.602	93.201	33.263	40.481	43.879	17.636	10	0.402
com2	42.580	42.911	36.713	39.120	45.194	43.343	39.602	103.018	35.772	43.179	47.143	19.872	10	0.422
0.174	40.139	41.539	36.050	35.625	42.709	40.468	37.964	96.300	34.045	40.580	44.542	18.403	10	0.413
0.434	48.399	47.352	46.898	45.286	48.686	43.921	46.818	109.776	39.875	48.152	52.516	20.292	10	0.386
0.868	60.940	58.214	53.622	59:907	59.854	52.959	61.059	147.659	52.790	55.987	86.299	28.773	10	0.434
1.302	70.010	69.113	02.597	70.684	67.608	66.582	69.518	175.131	65.523	62.799	77.986	34.258	10	0.439
1.737	78.807	76.975	74.431	82.977	72.291	82.766	79.107	201.354	72.844	71.498	89.305	39.585	10	0.443
2.171	87.005	85.935	81.752	94.747	91.252	90.002	84.077	220.194	77.154	79.788	99.191	42.853	10	0.432
2.605	97.110	94.980	87.489	105.191	96.527	98.625	89.713	239.829	82.007	87.387	107.886	46.845	10	0.434
3.039	105.259	102.149	90.670	110.408	102.449	107.550	95.021	259.677	87.510	$\$ 2.269$	115.306	51.301	10	0.445
3.473	111.497	110.487	100.407	120.354	110.590	115.811	102.284	274.840	92.476	95.586	123.633	53.851	10	0.436
3.907	122.375	115.189	104.620	129.702	118.434	123.838	107.776	291.885	99.535	100.098	131.345	57.347	10	0.437
4.342	133.204	122.118	112.486	137.725	123.697	129.688	113.891	301.225	102.670	109.378	138.608	58.202	10	0.420
4.776	140.674	127.887	121.631	146.806	129.451	136.119	118.953	316.413	107.761	115.497	146.119	60.998	10	0.417
5.210	149.031	136.484	130.092	153.555	135.765	145.756	130.558	333.214	115.390	122.342	155.219	63.639	10	0.410
5.644	158.443	141.232	154.233	160.956	145.210	151.104	139.640	351.898	124.182	130.048	165.695	66.485	10	0.401
6.078	165.408	151.791	176.007	169.105	153.203	159.907	147.327	372.803	129.100	134.278	175.893	70.725	10	0.402
6.512	173.013	157.685	189.375	178.124	159.039	166.368	152.939	396.349	137.253	141.164	185.131	. 75.920	10	0.410
6.946	181.351	164.057	194.294	188.159	168.678	173.373	158.996	413.771	140.205	148.794	193.158	79.311	10	0.411
7.381	185.828	170.965	199.475	199.393	175.780	180.993	172.673	423.069	146.506	160.351	201.503	79.519	10	0.395
7.815	195.482	178.479	210.713	205.528	187.631	189.315	180.434	442.978	149.874	163.526	210.396	83.719	10	0.398
8.249	200.695	182.490	230.163	212.053	191.944	198.438	188.925	464.854	153.401	170.269	219.323	88.833	10	0.405
8.683	206.193	195.682	237.470	226.429	211.382	208.485	193.477	476.622	157.097	177.593	229.043	89.957	10	0.393
8.683	224.658	205.590	245.256	242.897	235.199	225.622	208.554	515.798	169.338	194.308	246.722	97.392	10	0.395
SPRINGBACK	118.056	132.585	137.253	135.628	128.455	124.305	119.395	262.391	96.586	108.659	. 136.331	46.043	10	0.338
													c / V	0.413

TABTE 7
 FRESH REJTUSE OITERR PLASTIC PACKAGING EXPERTMENTS

SAMPLE MMMEER							STANDARD			
PSI	1	2	3	4	5	6	AVERAGE	EvIation	N	CV
(PONNDS PER CUBIC YARO)										
n voll	14.107	20.274	19.019	21.790	27.138	11.210	18.923	5.661	6	0.299
coml	15.397	21.576	22.430	22.233	20.629	13.051	19.219	3.990	6	0.208
com ${ }^{2}$	18.584	24.303	29.088	27.968	25.743	17.145	23.805	4.917	6	0.207
0.174	17.218	23.225	28.268	24.205	23.220	16.485	21.770	3.976	6	0.183
0.434	24.140	27.221	37.751	28.369	30.602	22.251	28.389	5.471	6	0.193
0.868	40.369	41.501	50.428	43.251	58.492	33.104	44.524	8.813	6	0.198
1. 302	\$6.5.39	59.801	58.054	58.529	75.752	41.130	56.667	12.015	6	0.212
1.737	57.878	68.421	65.794	73.971	81.058	45.751	65.480	12.417	6	0.190
2.171	76.252	72.330	75.917	85.107	90.605	52.881	75.515	12.983	6	0.172
2.605	84.278	83.458	85.289	93.117	102.686	59.012	84.640	14.534	6	0.172
3.039	90.639	96.135	92.112	102.791	107.462	64.632	92.295	14.986	6	0.162
3.473	98.038	106.967	100.122	111.478	118.484	69.014	100.684	17.223	6	0.171
3.907	108.753	120.550	108.283	118.133	124.888	71.436	108.007	19.426	6	0.180
4.342	111.718	128.723	117.092	129.753	132.025	79.840	116.525	19.663	6	0.169
4.776	117.167	138.085	121.200	134.151	140.026	85.635	122.878	20.007	6	0.163
5.210	123.176	148.915	130.347	143.908	149.060	94.694	131.683	20.932	6	0.159
5.544	137.253	154.993	140.988	149.338	159.340	99.313	140.204	21.678	6	0.155
6.078	137.253	168.771	146.988	155.195	159.340	104.406	145.325	22.741	6	0.156
6.512	145.572	176.620	153.520	168.403	171.143	110.050	154.218	24.559	6	0.159
6.946	145.572	185.236	160.661	175.887	184.834	116.338	161.421	26.866	6	0.166
7.381	154.963	194.735	160.661	175.887	184.834	123.389	165.745	25.471	δ	0.154
7.815	154.963	194.735	168.498	184.068	200.907	123.389	171.054	28.840	6	0.169
8.249	165.650	205.262	177.139	184.058	200.907	131.350	177.396	26.952	6	0.152
8.683	165.650	205.262	177.139	193.047	200.907	131.350	178.892	27.637	6	0.154
8.683	177.921	216.991	186.714	202.947	220.041	140.408	190.837	29.700	6	0.156
NGEACK	95.126	127.642	97.302	127.860	102.586	79.065	104.913	19.292	6	0.184
										0.178

TABLE 8

FRESH REFUSE NON-PACKAGING PLASTIC EXPERRIMENIS

SAMPLE MWGEER			
PSI	1	2	3
	(POUNDS PER CUBIC YARD)		
bin voll	68.249	39.767	59.953
coml	68.357	42.320	52.350
com2	71.955	48.108	59.828
0.174	87.760	45.906	58.073
0.434	78.785	58.625	70.024
0.868	94.095	74.002	88.168
1.302	105.165	94.702	91.888
1.737	115.630	111.920	109.435
2.171	125.630	124.241	119.003
2.605	134.344	145.616	127.354
3.039	139.171	155.559	128.861
3.473	148.035	171.422	130.404
3.907	155.984	180.564	131.985
4.342	162.528	190.737	131.985
4.776	167.205	202.124	133.604
5.210	174.748	214.957	133.604
5.644	180.167	222.005	135.264
6.078	188.956	229.531	142.337
6.512	195.307	237.585	207.405
6.946	202.100	246.224	211.432
7.381	209.383		224.510
7.815	213.225	276.374	229.237
8.249	213.225	276.374	239.313
8.683	221.348	288.134	250.316
8.683	230.114	288.134	262.380
SPRINGBACK	139.171	134.749	166.241

STANDARD

AVERAGE DEVIATION		N	CV
55.990	14.649	3	0.262
54.342	13.133	3	0.242
59.964	11.924	3	0.199
57.246	10.950	3	0.191
69.145	10.109	3	0.146
85.422	10.324	3	0.121
97.252	6.996	3	0.072
112.328	3.118	3	0.028
122.958	3.495	3	0.028
135.771	9.215	3	0.068
141.230	13.517	3	0.096
149.954	20.576	3	0.137
156.178	24.230	3	0.156
161.750	29.384	3	0.182
167.545	34.262	3	0.204
174.437	40.677	3	0.233
179.145	43.380	3	0.242
186.941	43.632	3	0.233
213.432	21.774	3	0.102
219.919	23.254	3	0.100
216.947	10.696	2	0.049
239.612	32.828	3	0.137
242.971	31.733	3	0.131
253.266	33.491	3	0.132
260.209	29.071	3	0.112
146.720	17.049	3	0.116
			0.143

TABLE 9
FRESH RENTUSE COMPOSITE/MIXIURES EXPERTMENIS

SAMPLE MMBER
$\begin{array}{llllll}\text { PSI } & 1 & 2 & 3 & 4 & 5\end{array}$
(PONNOS PER CUBIC YARD)

in vol1	130.318	68.942	173.022	179.919	130.990
coml	147.928	70.137	180.897	182.351	154.886
com2	177.870	78.672	216.082	203.015	185.285
0.174	159.063	69.159	186.416	194.138	196.942
0.434	205.412	89.037	238.054	237.480	241.774
0.868	242.506	98.471	276.346	279.007	283.221
1.302	290.056	129.297	294.079	313.241	313.034
1.737	314.741	141.610	310.694	347.335	349.861
2.171	338.768	150.193	325.401	378.209	386.210
2.605	366.765	159.883	345.867	408.466	396.509
3.039	392.731	170.909	359.430	429.061	418.848
3.473	414.753	193.105	384.565	459.984	443.854
3.907	430.860	203.686	407.354	486.269	457.511
4.342	439.392	215.494	470.024	505.527	457.511
4.776	467.143	228.755	504.521	537.455	487.512
5.210	487.676	236.017	533.911	573.688	504.037
5.544	498.635	243.756	566.936	615.159	521.723
6.078	534.681	252.019	591.320	630.348	540.695
6.512	547.883	270.347	632.101	663.094	561.098
6.946	561.754	280.549	646.974	680.776	561.098
7.381	576.345	280.549	662.564	699.427	583.102
7.815	607.925	280.549	678.923	719.130	583.102
8.249	625.050	303.451	695.111	739.974	606.902
8.683	643.167	303.451	733.237	762.063	606.902
8.683	862.366	330.424	774.546	837.020	632.728
NG84CK	467.143	223.596	541.801	573.688	457.511

STANDARD

AVERAGE DEVIATION	N	CV	
136.638	44.305	5	0.324
147.240	45.742	5	0.311
172.185	54.373	5	0.316
161.143	53.559	5	0.332
202.553	65.039	5	0.321
235.910	78.523	5	0.333
267.941	78.230	5	0.292
292.848	86.443	5	0.295
315.756	96.044	5	0.304
335.498	101.208	5	0.302
354.196	105.937	5	0.299
379.252	107.970	5	0.285
397.136	112.087	5	0.282
417.589	115.536	5	0.277
445.077	123.642	5	0.278
467.066	133.240	5	0.285
489.242	144.307	5	0.295
509.813	149.334	5	0.293
534.905	155.503	5	0.291
546.230	157.560	5	0.288
560.397	164.964	5	0.294
573.926	172.785	5	0.301
594.298	171.234	5	0.288
609.764	182.614	5	0.299
647.417	195.598	5	0.302
452.748	137.202	5	0.303
		AVG.	CV

TABLE 10

ERESE REFTUSE ALCMINUM CAN EXPERTMENIS

SAMPLE MAEER				STANDARD			
PSI	1	2	3	AVERAGE	viation	N	CV
(PONDS PER CUBIC YARD)							
bin voll	49.625	51.262	54.106	51.864	2.267	3	0.044
conl	44.619	46.552	49.576	46.949	2.552	3	0.054
com2	47.625	48.428	50.860	48.971	1.685	3	0.034
0.174	48.069	48.115	49.798	48.661	0.985	3	0.020
0.434	52.554	53.050	56.456	54.020	2.124	3	0.039
0.868	55.808	55.584	59.090	56.827	1.962	3	0.035
1.302	57.961	58.372	62.362	59.565	2.431	3	0.041
1.737	61.105	61.051	64.753	62.303	2.122	3	0.034
2.171	62.808	63.552	68.242	64.867	2.946	3	0.045
2.605	65.549	66.741	70.131	67.473	2.377	3	0.035
3.039	68.540	69.740	72.127	70.136	1.826	3	0.026
3.473	70.690	12.454	74.241	72.462	1.775	3	0.025
3.907	72.979	74.782	76.482	74.748	1.752	3	0.023
4.342	75.422	76.628	78.863	76.971	1.746	3	0.023
4.776	71.364	77.911	80.748	78.674	1.816	3	0.023
5.210	80.834	80.609	82.725	81.389	1.162	3	0.014
5.644	83.842	83.501	85.518	84.287	1.080	3	0.013
6.078	85.431	85.026	86.986	85.814	1.035	3	0.012
6.512	87.931	86.608	89.285	87.941	1.339	3	0.015
6.946	89.681	88.250	90.887	89.606	1.320	3	0.015
7.381	92.441	89.955	92.547	91.647	1.457	3	0.016
7.815	95.375	92.640	95.154	94.390	1.519	3	0.016
8.249	96.395	94.521	96.975	95.964	1.282	3	0.013
8.683	98.502	96.480	98.867	97.950	1.286	3	0.013
8.683	99.591	97.491	98.867	98.649	1.067	3	0.011
SPRINGSACK	91.271	89.094	91.502	90.622	1.328	3	0.015
				AVG. $C V=$			0.025

TABLE 11

HANDFTIC REFUSE NON-PACKAGING PAPER EXXERTMENTS

TABLE 13
LANDFILI REFUSE PAPERBOARD BOKES EXPERTMENTS

SAMPLE MMMER								STANDARD			
PSI	1	2	3	4	5	6	7	AVERAGE	deviation	N	CV
(POXNDS PER CUBIC YARD)											
bin voll	155.695	219.660	118.227	255.329	206.449			191.072	54.177	5	0.284
coml	183.532	296.837	128.103	315.036	251.086	149.750	148.691	210.434	76.438	7	0.363
com2	198.827	330.256	158.776	349.196	301.304	184.834	189.635	244.590	79.108	7	0.323
0.174	193.192	284.964	147.553	316.757	272.145	172.973	185.600	224.741	65.200	7	0.290
0.434	272.676	398.949	202.753	456.430	426.086	271.815	281.394	330.015	95.914	7	0.291
0.868	343.298	493.749	245.067	552.063	533.956	347.807	339.865	407.972	117.595	7	0.288
1.302	381.747	514.110	284.673	623.297	577.842	371.793	368.585	446.007	125.903	7	0.282
1.737	429.895	560.322	309.700	666.283	594.120	399.334	415.381	482.149	126.714	7	0.263
2.171	454.461	615.663	323.939	715.637	629.589	420.078	459.116	516.926	138.922	7	0.269
2.605	502.299	664.916	347.934	752.813	669.563	443.096	475.811	550.919	146.439	7	0.266
3.039	536.162	702.376	366.009	772.888	691.516	468.783	513.130	578.695	146.720	7	0.254
3.473	548.487	744.309	396.939	794.063	714.958	497.631	534.074	604.351	147.355	7	0.244
3.907	561.393	767.210	420.637	816.431	740.044	513.429	556.800	625.135	148.893	7	0.238
4.342	589.116	791.566	433.579	840.096	766.954	530.263	556.800	644.054	154.476	7	0.240
4.776	604.030	817.519	447.344	865.173	766.954	530.263	581.547	658.976	157.946	7	0.240
5.210	619.719	845.232	462.011	920.105	795.896	548.238	581.547	681.821	171.546	7	0.252
5.644	636.245	874.889	477.672	950.272	795.896	567.474	608.596	701.578	174.075	7	0.248
6.078	653.676	906.703	494.433	950.272	827.108	567.474	608.596	715.466	178.029	7	0.249
6.512	672.090	906.703	512.412	982.485	827.108	588.109	608.596	728.215	177.928	7	0.244
6.946	672.090	940.918	531.748	982.485	827.108	588.109	638.283	740.106	177.084	7	0.239
7.381	691.571	940.918	531.748	1016.958	860.867	610.302	638.283	755.807	183.855	7	0.243
7.815	712.215	977.817	552.601	1016.958	860.867	610.302	671.016	771.682	181.804	7	0.236
8.249	712.215	977.817	575.156	1016.958	860.867	634.236	671.016	778.324	173.916	7	0.223
8.683	734.129	977.817	575.156	1053.939	897.500	634.236	671.016	791.970	184.466	7	0.233
8.683	757.435	1017.728	599.631	1093.710	897.500	660.123	707.287	819.059	187.419	7	0.229
SPRIMGRACK	564.715	744.369	402.610	799.540	644.008	465.410	471.525	584.588	150.412	7	0.257
									Average CV		- 0.251

TABLE 14
LANDFILL REFUSE OTHER PACKAGING PAPER AND PAPERBOARD EXPERTMENIS

SAMPLE NUMEER						STANDARD			
PSI	1	2	3	4	5	AVERAGE	OEviation	N	V
(POUNOS PER CUBIC YARD)									
n woll	104.308	119.785	128.974	86.502		104.893	27.543	4	0.263
coml	105.718	134.893	172.546	82.854	91.045	117.431	36.683	5	0.312
com2	137.359	157.740	199.460	121.322	122.208	147.618	32.529	5	0.220
0.174	131.560	152.435	195.727	114.185	104.549	139.711	36.218	5	0.259
0.434	212.956	237.714	283.728	230.306	185.805	230.102	36.020	5	0.157
0.868	287.388	317.692	411.248	289.108	260.128	313.112	58.516	5	0.187
1.302	374.696	373.550	463.302	331.416	293.592	367.331	63.277	5	0.172
1.737	416.915	419.667	530.447	367.245	313.947	409.644	80.160	5	0.196
2.771	469.856	465.658	580.966	411.760	337.202	453.089	89.344	5	0.197
2.605	519.315	507.359	620.354	438.325	364.179	489.906	95.726	5	0.195
3.039	558.508	539.572	665.470	468.554	395.846	525.590	101.158	5	0.192
3.473	580.411	557.263	690.582	503.262	395.846	545.473	107.919	5	0.198
3.907	504. 101	596.369	717.664	503.262	395.846	563.449	120.656	5	0.214
4.342	629.807	618.056	746.956	543.523	433.546	594.378	115.704	5	0.195
4.776	657.799	829.099	778.742	543.523	433.546	648.542	163.471	5	0.252
5.210	657.799	656.530	813.353	543.523	433.546	622.950	142.784	5	0.229
5.544	688.394	693.736	813.353	543.523	433.546	634.510	147.531	5	0.233
6.078	721.974	693.736	851.183	543.523	433.546	648.792	162.596	5	0.251
5.512	721.974	693.736	851.183	590.786	433.546	658.245	156.194	5	0.237
6.946	758.999	723.256	851.183	590.786	479.182	680.681	146.373	5	0.245
7.381	758.999	723.256	892.704	590.786	479.182	688.985	159.090	5	0.231
7.815	800.028	755.401	892.704	590.786	479.182	703.620	166.457	5	0.237
8.249	800.026	755.401	938.484	590.786	479.182	712.776	180.153	5	0.253
8.583	845.741	755.401	938.484	647.051	479.182	733.172	178.358	5	0.243
8.583	845.741	790.536	938.484	647.051	479.182	740.199	180.136	5	0.243
NGBACK	592.019	581.078	653.587	476.774	387.424	538.176	105.541	5	0.196
							Average CV:		0.222

TABLE 15

LANDFILLL REFUSE PLASTIC FILM PACKAGING EXPERTMENTS

TABLE 16
LANDFITL REFUSE PLASTIC RIGID PACKAGING CONTATNERS EXPERTMIENIS

[^1]TABLE 17
LANDFILL REFUSE OTHER PLASTIC PACKAGING EXPERTMENIS

SAMPLE NMEER					STANDARD			
PSI	1	2	3	4	AVERAGE	DEVIATION	N	CV
(POUNOS PER CUBIC YARD)								
bin voll	31.599	39.927	45.343	50.549	41.854	8.096	4	0.193
coml	35.028	38.987	49.810	61.478	46.326	11.877	4	0.256
comi	41.805	39.844	57.057	69.904	52.152	14.115	4	0.271
0.174	40.212	38.675	55.885	62.882	49.416	11.880	4	0.240
0.434	50.096	46.634	79.695	102.008	69.608	26.205	4	0.376
0.868	54.347	55.145	97.266	119.748	81.627	32.359	4	0.397
1.302	57.853	61.715	102.089	131.153	88.203	34.930	4	0.396
1.737	61.001	65.625	113.328	139.102	94.764	37.857	4	0.399
2.171	63.597	70.063	119.930	148.076	100.417	40.535	4	0.404
2.605	66.424	72.880	127.348	154.731	105.346	42.786	4	0.406
3.039	68.452	76.736	135.745	162.013	110.736	45.456	4	0.410
3.473	70.608	77.557	141.985	170.013	115.041	48.742	4	0.424
3.907	72.904	80.128	148.829	174.317	119.044	50.285	4	0.422
4.342	75.355	82.875	152.504	183.614	123.587	52.988	4	0.429
4.776	77.976	83.833	156.364	188.645	126.704	54.555	4	0.431
5.210	79.356	85.817	164.704	193.959	130.959	57.179	4	0.437
5.644	82.268	87.898	169.216	199.581	134.741	58.710	4	0.436
6.078	83.806	88.976	173.983	205.538	138.076	61.092	4	0.442
6.512	87.060	92.376	179.025	211.863	142.581	62.533	4	0.439
6.946	90.578	93.568	179.026	218.588	145.440	63.716	4	0.438
7.381	92.445	96.047	184.370	218.588	147.863	63.485	4	0.429
7.815	94.392	97.336	190.043	225.755	151.882	66.317	4	0.437
8.249	94.392	98.660	196.078	225.755	153.721	67.168	4	0.437
8.583	96.422	100.021	196.076	233.408	156.482	68.994	4	0.441
8.683	100.755	107.430	209.369	241.598	164.788	71.361	4	0.433
SPRIMGPACK	73.202	83.351	126.695	146.501	107.437	34.876	4	0.325
						Average CV:		0.390

TABLE 18
LANDFITH REFFUSE NON-PACKAGING PLASTIC EXPPERIMENIS

SAMPLE NMMBER

$\begin{array}{lllll}\text { PSI } & 1 & 2 & 3 & 4\end{array}$
(POUNDS PER CUBIC YARO)
$\begin{array}{llllll}\text { in voll } & 109.326 & 107.694 & 122.013 & 96.443\end{array}$
$\begin{array}{llllll}\text { caml } & 119.514 & 136.436 & 107.290 & 109.476\end{array}$
$\begin{array}{llllll}\text { cam2 } & 123.713 & 126.288 & 107.669 & 115.238\end{array}$
$\begin{array}{llllll}0.174 & 115.778 & 116.204 & 103.289 & 109.868\end{array}$
$\begin{array}{llllll}0.434 & 146.539 & 123.732 & 131.906 & 132.698\end{array}$
$\begin{array}{llllll}0.868 & 179.692 & 132.302 & 170.225 & 167.504\end{array}$
$\begin{array}{llllll}1.302 & 203.551 & 144.842 & 186.334 & 179.259\end{array}$
$\begin{array}{llllll}1.737 & 217.005 & 163.432 & 196.582 & 203.001\end{array}$
$\begin{array}{lllll}2.171 & 221.854 & 172.665 & 204.498 & 217.399\end{array}$
$\begin{array}{lllll}2.605 & 229.549 & 174.638 & 216.101 & 237.622\end{array}$
$\begin{array}{llllll}3.039 & 237.796 & 183.004 & 222.410 & 245.226\end{array}$
$\begin{array}{lllll}3.473 & 243.632 & 205.112 & 232.597 & 253.332\end{array}$
$\begin{array}{llllll}3.907 & 252.942 & 210.770 & 236.203 & 266.550\end{array}$
$\begin{array}{llllll}4.342 & 259.555 & 213.718 & 243.762 & 276.155\end{array}$
$\begin{array}{llllll}4.776 & 266.523 & 213.718 & 247.725 & 281.222\end{array}$
$\begin{array}{llllll}5.210 & 270.149 & 219.869 & 251.820 & 286.479\end{array}$
$\begin{array}{llllll}5.544 & 277.706 & 226.383 & 256.052 & 291.935\end{array}$
$\begin{array}{lllll}6.078 & 285.697 & 233.296 & 260.429 & 297.604\end{array}$
$\begin{array}{lllll}6.512 & 294.163 & 240.643 & 264.958 & 303.497\end{array}$
$\begin{array}{llllll}6.946 & 298.586 & 240.643 & 269.648 & 309.629\end{array}$
$\begin{array}{llllll}7.381 & 307.844 & 244.494 & 274.506 & 316.013\end{array}$
$\begin{array}{llllll}7.815 & 317.696 & 248.469 & 274.506 & 322.666\end{array}$
$8.249 \quad 322.861 \quad 256.821 \quad 279.543 \quad 322.666$
$\begin{array}{llllll}8.683 & 328.198 & 261.211 & 284.768 & 329.605\end{array}$
$\begin{array}{llllll}8.683 & 351.433 & 275.331 & 290.193 & 336.849\end{array}$
$\begin{array}{lllllll}\text { INGBACK } & 229.549 & 223.078 & 194.698 & 197.127\end{array}$

STANDARD
AVERAGE DEVIATION N CV

108.869	10.468	4	0.096
118.204	13.288	4	0.112
118.227	8.475	4	0.072
111.285	6.064	4	0.054
133.718	9.459	4	0.071
162.431	20.754	4	0.128
178.671	24.745	4	0.138
195.005	22.711	4	0.116
204.104	22.214	4	0.109
214.477	28.004	4	0.131
222.109	27.747	4	0.125
233.668	20.837	4	0.089
241.616	24.019	4	0.099
248.298	26.577	4	0.107
252.297	29.145	4	0.116
257.079	28.563	4	0.111
263.019	28.534	4	0.108
269.257	28.548	4	0.106
275.815	28.623	4	0.104
279.626	30.978	4	0.111
285.714	32.825	4	0.115
290.834	35.572	4	0.122
295.473	32.849	4	0.111
300.946	33.687	4	0.112
313.451	36.443	4	0.116
211.113	17.777	4	0.084
	Average $C V:$	0.106	

TABLE 19
LANDFILL REFUSE COMPOSITE/MIXIURES EXPERTMENTS

SAMPLE NMMEER				STANDARO			
PSI	1	2	3	AVERAGE	deviation	N	CV
(PONOS PER CUBIC YARD)							
bin voll	257.747	282.833	302.732	281.104	22.542	3	0.080
coml	261.230	401.317	271.296	311.281	78.135	3	0.251
cmm	330.597	455.816	34.561	377.325	68.386	3	0.181
0.174	282.684	403.510	310.831	332.342	63.220	3	0.190
0.434	446.684	489.021	409.639	448.448	39.721	3	0.089
0.868	527.168	572.420	502.890	534.159	35.289	3	0.066
1.302	568.113	610.266	557.256	578.545	28.003	3	0.048
1.737	603.254	653.471	600.538	619.088	29.808	3	0.048
2.171	543.029	690.114	637.685	656.943	28.851	3	0.044
2.605	672.593	716.915	665.112	684.874.	28.000	3	0.041
3.039	705.008	745.881	695.005	715.298	26.954	3	0.038
3.473	740.704	794.003	727.711	754.139	35.129	3	0.047
3.907	759.943	829.688	745.247	778.293	45.112	3	0.058
4.342	780.208	848.761	763.648	797.539	45.126	3	0.057
4.776	801.584	889.666	782.981	824.743	56.989	3	0.069
5.210	801.584	911.633	803.318	838.845	63.042	3	0.075
5.644	824.164	934.712	847.335	868.737	58.299	3	0.067
6.078	824.164	934.712	847.335	868.737	58.299	3	0.067
6.512	848.053	958.990	871.204	892.749	58.523	3	0.065
6.946	873.368	984.563	896.456	918.129	58.681	3	0.064
7.381	873.368	984.563	951.622	936.518	57.116	3	0.061
7.815	900.240	1011.538	981.833	964.537	57.629	3	0.060
8.249	900.240	1040.032	981.833	974.035	70.221	3	0.072
8.683	900.240	1040.032	981.833	974.035	70.221	3	0.072
8.683	959.273	1070.177	1014.024	1014.491	55.454	3	0.055
SPRINGeack	700.786	798.295	710.982	736.688	53.596	3	0.073
					Average CV:		0.078

tabre 20
AVERAGE TRASH-CAN AND LANDFITC DENSITIES WITH 95 PERCENT CONFIDENCE INIERTVALS

REFUSE TYPE	TRASH-CAN DENSITY Pounds pe		LANDFILI DENSITY c yard	
	AVERAGE	95% c.i.	AVERAGE	95\% c.i.
Non-packaging Paper	170.484	+/- 60.559	798.255	+/- 37.818
Corrugated	42.701	+/- 13.052	750.218	+/- 44.632
Paperboard Boxes	41.644	+/- 6.626	819.059	+/-138.842
Other Packaging Paper	48.219	+/- 6.167	740.199	+/-157.896
Plastic Film Packaging	83.884	+/- 12.159	667.164	+/- 65.752
Plastic Rigid Pack. Cont.	52.516	+/- 12.577	354.531	+/- 26.188
Other Plastic Packaging	28.389	+/- 4.378	164.788	+/- 69.934
Non-packaging Plastic	69.145	+/- 11.439	313.451	+/- 35.714
Composite/Mixtures	202.553	+/-57.009	1014.491	+/- 62.752

TABLE 21
AVERAGE AND MEDIAN DENSITIES FOR REFUSE CATEGORIES AS EXCAVATED FRCM FIVE STUDY LANDFILIS

TYPE		DENSITY NON-ZERO (Lbs/Cu yd)				COMPACTION STUDY AVERAGE (BIN VOL.1)
Glass		110	2581.7	1199.8	10.4	N
Metal	Aluminum	101	108.7	90.5	1.39	N
	Steel	111	557.4	486.5	3.58	N
Plastic	Clear/Rigid	30	228.6	207.6	5.17	99.51
	Colored/Rig.	36	189.7	202.0	3.61	99.5
	Foam	34	184.3	170.2	4.98	41.8 \%
	Film	36	127.2	102.9	0.00	36.5
	Total	111	154.3	113.9	7.36	N
Paper	Corrugated	80	243.7	216.0	0.88	$116.6{ }^{4}$
	Glossy Mags	56	619.9	460.6	7.27	N
	Newsprint	109	321.5	253.1	6.52	2265
	Non-Package	107	257.2	214.6	1.29	226
	Packaging	109	217.6	206.3	0.51	1915
Organies	Food	95	422.2	426.7	-1.63	N
	Wood	105	354.0	323.2	0.54	N
	Yard	105	212.8	162.6	1.33	N
Other						
	QSR Pack.	39	66.4	49.8	1.37	N
	Diapers	66	176.4	121.4	1.84	281.1
	Rubber	65	343.2	343.2	0.87	N
	Textiles	105	201.4	180.8	0.69	N
	Dirt	22	1598.6	1625.4	0.41	N
	Fines	106	1708.2	1424.2	9.64	N
	Rocks	46	1780.2	1845.7	0.28	N

Notes: $N=$ not studied. $\quad 4=$ corrugated cardboard packaging
1 = rigid plastic containers $5=n o n-p a c k a g i n g$ paper
$2=$ non-packaging plastic $\quad 6=$ paperboard boxes 3 = plastic film packaging $7=$ composite/mixtures Trace volumes of materials measured in the field were assigned volumes based on those samples having non-trace volume measurements for a material category.

FIGURES 1 TO 4
FRESH REFUSE COMPACTION EXPERIMENTS
GGdVd פNIЭVMOVd-NON

(ayłd Jianc yad sannod) यUSNag

(ayャx วano yad sonnod) hlisnac
FIGURES 15 TO 18
LANDFILL REFUSE COMPACTION EXPERTMENIS

NON-PACKAGING FLASTE
0
COMPOSTE/AXXIGES
\sim

NON-PACKAGING PLASTIC AND COMPOSITE/MIXTURES

$\begin{array}{cc}* * * * \\ * * & * \\ * & *\end{array}$ ****

**

$* * * *$

F

E PLASTIC FILM PACKAGING

- bags and wrappers (trash, food, etc.), baggies, food wrap films

F FLASTIC RIGID PACKAGING CONTAINERS

- bottles, jars, tubs and liss, microwsve trays, hard cosmetic cases

OTHER PLASTIC PACKAGING

- cookie trays, six-pack rings and holders, flexible tubes, all polystyrene foam

NON-PACKAGING PLASTIC

- plastic cups and utensils, pens, razors, toys, Etc.

COMPOSITE/MIXTURES (papers \& plastics)

- blister packs, juice concentrate centainers, spirel wound sought containers, diapers

都

NUMBER	PSI	INCHES	EIGHtas	NOTES	
COM1, \#1		27	ϕ	TYPE	LANDFILI(LF)
COM1, \#2		28	\varnothing		ERESH (FR)
COM: , \#3		27	Q	PLATE $=$	OPEN(OP)
COM1, \#4		26	0		CLOSED(CL)
COM2, \#1		29	1	BIN VOL1	= UNCOMPACTED
COM2,\#2		30	θ	BIN VOL2	= COMPACTED
COM2,\#3		27	3	COM1 $=$	NO PLATE
COM2, \#4		26	3	com $2=$	WITH PLATE

APPENDIX C

Appendix C

IDENTIFICATION OF HIGH-INTEREST SEGMENTS OF SOLID WASTE

The composition of the nation's household and commercial solid waste stream in 1986 is summarized in Table C-1. On a weight basis, manufactured products account for 69.1 percent of all wastes, with packaging being the single largest component, accounting for 30.3 percent of all waste by weight. People are most familiar, however, with what ends up in their own trash cans at home, and what is discarded at food service establishments, parks, and other public places, as well as what they see in litter. They are also aware, but to a lesser extent, of what is visible in the trash cans where they work.

Table C-1

MUNICIPAL SOLID WASTE -
HOUSEHOLD AND COMMERCIAL SOLID WASTE COMPOSITION - 1986 (In percent by weight)

Durable goods (major appliances, tires, etc.)	13.6
Nondurable goods (printed paper, etc.)	25.2
Packaging	$\frac{30.3}{69.1}$
Product Subtotal	
Food wastes	8.9
Yard wastes	20.1
Miscellaneous inorganics	
Total	$\frac{1.8}{100.0}$

Source: Franklin Associates, Ltd.

The two primary areas of highly visible solid waste identified are packaging and living area wastes. Packaging includes all packaging materials whether discarded at or away from home. Table C-2 summarizes the weight data of packaging for 1986, as reported in Reference 15 and repeated in Appendix Table A-2.

The second highly visible category of MSW is the living area wastes, which are those materials discarded to trash cans inside homes, primarily kitchen and bedroom trash cans.

Three broad categories of trash were selected from Table C-1 for the initial definition of living area trash. These are (1) nondurable goods, (2) packaging, and (3) food wastes. Excluded are durable goods (major appliances, etc.), yard wastes, and miscellaneous inorganics. These items are stored outside living areas or set out for trash pickup separate from the living area trash.

$$
C-1
$$

The values for the living area trash categories shown in Table C-3 were derived by reducing total MSW categories to reflect discards at businesses and other sites away from home, as detailed in Appendix Table A-2. For example, office papers are discarded primarily in businesses, as are corrugated containers,

Table C-2
 NET DISCARDS OF PACKAGING MATERIALS, 1986 (Million tons per year)

Glass Containers	Million Tons
Beer and soft drink	4.4
Other containers	6.3
Subtotal	10.7
Steel Containers	0.1
Beer and soft drink	1.7
Food cans	0.9
Other packaging	2.7
Subtotal	0.7
Aluminum	0.4
Beer and soft drink	1.1
Other packaging	
Subtotal	11.4
Paper and Paperboard	5.1
Corrugated	3.9
Other paperboard	20.4
Paper packaging	2.0
Subtotal	2.8
Plastics	0.8
Film	5.6
Rigid containers	2.1
Other packaging	0.2
Subtotal	
Wood Packaging	42.8

Source: Franklin Associates, Ltd.
so amounts were subtracted from total MSW to reflect this. In a similar fashion, each of the 30 MSW categories was adjusted to develop estimates of quantities discarded in household living areas.

The second fractional component of MSW selected for detailed study was packaging. This category was much easier to derive from the MSW database, as it is already detailed sufficiently. The amounts are summarized in Table c-4.

Table C-4 also shows that the packaging portion of the waste stream is about 31 percent of the total waste stream (by weight). Living area trash is 36 percent of the MSW waste stream, with living area consumer packaging being 16 percent of the MSW total, nondurable goods being 16 percent, and food waste, 4 percent.

DESCRIPTION OF PACKAGING AND LIVING AREA WASTES

Packaging

This category of waste includes items that are used to surround, protect, and label other products or materials bought

Table C-3
NET DISCARDS TO LIVING AREA TRASH CANS, 1986 (Million tons per year)

Packaging
Glass 8.9
Metal . 2.5
Paper 6.8
Plastics 4.4
Other $\quad 0.1$
Subtotal $\quad 22.7$
Nondurable Goods
Paper
17.9
Plastic $\quad 1.6$
Other $\frac{2.6}{22.1}$
Subtotal 22.1
Food 6.3
Total 51.1

[^2]
Table C-4

TWO HIGHLY VISIBLE COMPONENTS OF MUNICIPAL SOLID WASTE, 1986

Weight
(million tons/year)

Percent of Total Waste Stream*

Packaging
Discarded at
All Locations
Living Area Trash
Packaging**
Nondurable goods 22.1
Food
Subtotal

31
22.716
$22.1 \quad 16$
6.3
51.1
$\frac{4}{36}$

* Total net discards of MSW for 1986 was 141 million tons (after recovery for recycling).
** Note that packaging and living area trash overlap to some degree, with some packaging discarded in living areas.

Source: Franklin Associates, Ltd.
by individual consumers or businesses. The items included in this category either end up at home, are used for very short times and discarded elsewhere, or are discarded by commercial or small manufacturing businesses. Included are disposable food and beverage service either carried out or consumed on premises and discarded there. Listed below are the material and major subdivisions of package types.

Glass Containers

Beer and soft drink bottles
Wine and liquor bottles
Food and other bottles and jars

Steel Containers

Beer and soft drink cans
Food cans
Pails and other

Aluminum Packaging

Beer and soft drink cans Food cans, foil, trays, closures, and other

Paper and Paperboard Packaging

Corrugated containers (pizza boxes, mail order or delivery boxes, etc.)
Other paperboard boxes, separators, and other paperboard packaging
Paper bags and sacks, wrapping paper, and other paper packaging

Plastics Packaging

Bottles, jars, closures, and other rigid containers Bags, sacks, and other film Foam, rigid containers, and other

Other Packaging

Miscellaneous (textiles, leather, string, tape, etc.) Composites or mixtures of materials

Living Area Trash

About one-half of living area wastes are packaging and the other half is nondurable goods. Nondurable goods are primarily paper and plastic products, which are produced, used, and discarded in a relatively short period of time ranging from a few minutes to a few years. This is in contrast to durable goods, which include major appliances, tires, furniture, and other items intended to last many years. Examination of discarded household wastes shows the following as being the major subdivisions of this category:

Newspapers
Books and magazines
Mail
Tissues and towels
Plates, cups, tableware, coverings and other nonpackaging paper and plastic film
Clothing and footwear
Toys, games, and other miscellaneous nondurables.

[^0]: 1/ Numbers in parenthesis refer to reference numbers (at the end of this report).
 2/ This range is based on 600 pounds per cubic yard for residential compactor trucks and 800-1,000 pounds per cubic yard from commercial trucks.
 3/ Data from high-density balers.

[^1]: Average CV: 0.136

[^2]: Source: Franklin Associates, Ltd.

