Development of Renewable Microbial Polyesters for Cost Effective and Energy-Efficient Wood-Plastic Composites

PI: David N. Thompson (Idaho National Lab.)
R&D Partners: Washington State University
University of California-Davis

Industry Partners: NewPage Corporation
Eco:Logic Engineering, Inc.
Strandex, Incorporated
Wood-Plastic Composites

- Wood-plastic composites markets for durable applications are growing at 38% annually (16.9 billion lb in 2002)
- The 30-50 wt% of plastic in these materials represents a significant embodied energy derived from petroleum
- Utilizing bio-based plastics can potentially decrease the annual energy costs by as much as 0.31 Quads by 2020

Project Goal: Develop wood-plastic composites derived from biobased plastics produced onsite at pulp mills from mill wastes
Polyhydroxyalkanoates (PHAs)

- Potential alternative to 50% of current polymers used
- **Highly versatile family:**
 - Hydrolytically stable
 - Biodegradable
 - Form excellent films
 - Excellent UV stability
- **Current applications:** Niche markets, biodegradable products
- **Future applications:** Construction, Automotive, Agricultural
- **Challenges:**
 - Substitute broadly for petro-polymers
 - Meet economic and technical requirements
- **Needs:**
 - Reduce material costs
 - Optimize application
 - Realize waste-econ advantages
Our Solution

- **Reduce Material Costs**
 - Manufacture wood-thermoplastic composites using unpurified renewable plastic feedstocks
 - Pulp & paper mill wastewaters provide carbon sources and microbial consortia

- **Optimize Application Technology**
 - Refine formulations and processing technology
 - Utilize cell mass in composite applications
 - Optimize properties for building products

![Diagram showing the process of producing wood/PHA composite with cost efficiency and enhanced performance]

- Concept 1
 - Hi performance bioreactor
 - WTE Carbon source
 - PHA containing cells
 - Concentrate & lyse
 - PHA & cell debris
 - Drying

- Concept 2
 - Dry crude PHA
 - Wood fiber & additives
 - Wood/PHA composite w/ cost efficiency and Enhanced performance
Markets & Commercialization

- Based on properties, PHAs can potentially replace HDPE in durable composites
- Example is decking ($5.3 billion market)
- Residential & industrial markets for wood composites expected to saturate at 25-30% of treated lumber market, or 5.46 MM tons
- HDPE-based composites account for 90% of this total
- We assumed we could impact half of this total, or 2.46 MM tons annually
- First commercialization in 2010-2015 (est.)
Energy Savings Per Unit-Year

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Waste PHA/wood composites</th>
<th>HDPE/wood composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (million kWh)</td>
<td>181.4</td>
<td>186.7</td>
</tr>
<tr>
<td>Natural Gas (million ft^3)</td>
<td>37.68</td>
<td>79.60</td>
</tr>
<tr>
<td>Petroleum (million bbl)</td>
<td>0.0680</td>
<td>0.0956</td>
</tr>
<tr>
<td>Steam Coal (million ton)</td>
<td>0.0333</td>
<td>0.0333</td>
</tr>
<tr>
<td>Black Liquor (thous. ton)</td>
<td>289.3</td>
<td>289.3</td>
</tr>
<tr>
<td>All Other (billion Btu)</td>
<td>1596</td>
<td>1596</td>
</tr>
</tbody>
</table>

- One unit-year was defined as a 1000 ton/day pulp & paper mill
- This equates to ca. 350,000 tons/yr of paper, and 960,000 tons/yr of biosolids containing 40% PHA
- **Values are for wood into mill through composite out of extrusion**
Annual Energy Savings For Entire Market

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Waste PHA/wood composites</th>
<th>HDPE/wood composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (MM kWh)</td>
<td>46,628</td>
<td>47,982</td>
</tr>
<tr>
<td>Natural Gas (MM ft³)</td>
<td>9,684</td>
<td>20,458</td>
</tr>
<tr>
<td>Petroleum (MM bbl)</td>
<td>17.5</td>
<td>24.6</td>
</tr>
<tr>
<td>Steam Coal (MM ton)</td>
<td>8.57</td>
<td>8.57</td>
</tr>
<tr>
<td>Black Liquor (thous ton)</td>
<td>73,347</td>
<td>73,347</td>
</tr>
<tr>
<td>All Other (BB Btu)</td>
<td>410,151</td>
<td>410,151</td>
</tr>
</tbody>
</table>

- Unit definition gives 257 units in the U.S.A. (paper & linerboard)
- **Values are for wood into mill through composite out of extrusion**
- If include municipal and / or other wastewaters, can easily supply the supply entire durable composites market with waste-derived PHAs
Other Benefits

- Significant reductions in SO_2, NO_x, Particulates, VOC, & CO emissions
- New profit center for pulp and paper mills
- Utilization of mill waste effluents for PHA production reduces disposal costs
- COD, BOD and phosphates in waste effluents are sequestered into saleable building materials
- Improved and more economic PHA production and utilization for composites
- Attenuated ultimate biodegradability of the wood-PHA composite
Key Technical Barriers

- Poor understanding of the mechanical, adhesion, and thermal properties of composites produced using PHAs of widely varying compositions
- Considerable diversity of wastewater microbial consortia and metabolic abilities to accumulate PHAs
- Unknown effects of using waste carbon sources available onsite on the health and productivity of wastewater consortia
- Poorly characterized effects of integrating cell debris into composites
- Unknown effects of these variables on the large scale processing needed for commercial application
Project Strategy & Objectives

- **Task 1:** Determine preferred PHA monomer compositions, PHA/cell debris ratios, and PHA/wood ratios for the production of superior wood-PHA composites
- **Task 2:** Define feedstock compositional ranges for municipal wastewater effluents (WTE) and pulp & paper effluents (PPE) for production of PHAs meeting PHA compositions identified
- **Task 3:** Determine efficacy of supplementing PPE and WTE to improve PHA production in and from these effluents
- **Task 4:** Test the material properties of wood-PHA composites produced from waste-derived PHA made and used without extraction or purification
- **Task 5:** Produce and test wood-PHA composites made from WTE-derived PHA at the pilot-scale
<table>
<thead>
<tr>
<th>Task</th>
<th>Date</th>
<th>Milestone Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/30/05</td>
<td>Physical and rheological properties of the collected PHAs and WFRTCs are defined</td>
</tr>
<tr>
<td></td>
<td>12/30/05</td>
<td>Composite processing and mechanical properties of the purified PHA WFRTCs completed</td>
</tr>
<tr>
<td></td>
<td>1/2/06</td>
<td>Decision Point #1 – Wood/purified PHA composites with integrated cell debris produced having MOR \geq 1500 psi and MOE \geq 0.20 Mpsi</td>
</tr>
<tr>
<td>2</td>
<td>9/30/05</td>
<td>WTE survey of several waste treatment facilities completed</td>
</tr>
<tr>
<td></td>
<td>9/30/05</td>
<td>Enriched paper mill inoculum source and/or ATCC Sphaerotilus culture ready for testing</td>
</tr>
<tr>
<td></td>
<td>3/30/06</td>
<td>Unsupplemented PHA from PPE completed</td>
</tr>
<tr>
<td></td>
<td>4/3/06</td>
<td>Decision Point #2 – PHA produced from a PPE source by indigenous or inoculated laboratory cultures at \geq 1 wt% of the dry cell mass</td>
</tr>
<tr>
<td>3</td>
<td>9/29/06</td>
<td>WTE supplements & production criteria for pilot test defined</td>
</tr>
<tr>
<td></td>
<td>9/29/06</td>
<td>In situ WTE process requirements for pilot test defined</td>
</tr>
<tr>
<td></td>
<td>9/29/06</td>
<td>Material & properties defined for waste-PHA composites</td>
</tr>
<tr>
<td>4</td>
<td>10/2/06</td>
<td>Decision Point #3 - Wood/purified PHA composites with integrated cell debris produced having MOR \geq 2000 psi and MOE \geq 0.25 Mpsi</td>
</tr>
<tr>
<td></td>
<td>12/1/06</td>
<td>Basic processing conditions defined for pilot test</td>
</tr>
<tr>
<td></td>
<td>12/1/06</td>
<td>Formulations identified for pilot extrusions</td>
</tr>
<tr>
<td></td>
<td>7/31/06</td>
<td>Pilot test plan completed</td>
</tr>
<tr>
<td>5</td>
<td>2/28/07</td>
<td>Supplemented or unsupplemented WTE biosolids produced for pilot extrusions</td>
</tr>
<tr>
<td></td>
<td>4/30/07</td>
<td>Pilot extrusions completed</td>
</tr>
<tr>
<td></td>
<td>9/28/07</td>
<td>Project completion and transition planned to technology demonstration phase</td>
</tr>
<tr>
<td></td>
<td>9/28/07</td>
<td>Final Report delivered to DOE</td>
</tr>
</tbody>
</table>
Project Scope and Schedule Changes

- Milestones, decision points, and project end date were extended due to funding shortfalls
 - 31% shortfall in FY2005
 - 60% shortfall in FY2006

- Change in scope for pilot test
 - Originally planned for Eco:Logic’s municipal waste treatment facility in Lincoln, CA
 - Now planned for NewPage’s mill in Chillicothe, OH
 - Intent is to better align with ITP’s goals for the program
Revised Milestones & Decision Points

<table>
<thead>
<tr>
<th>Task</th>
<th>Date</th>
<th>Milestone Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/31/06</td>
<td>Physical and rheological properties of the collected PHAs and WFRTCs are defined</td>
</tr>
<tr>
<td></td>
<td>7/31/06</td>
<td>Composite processing and mechanical properties of the purified PHA WFRTCs completed</td>
</tr>
<tr>
<td></td>
<td>8/4/06</td>
<td>Decision Point #1 – Wood/purified PHA composites with integrated cell debris produced having MOR (\geq 1500 \text{ psi}) and MOE (\geq 0.20 \text{ Mpsi})</td>
</tr>
<tr>
<td>2</td>
<td>7/1/06</td>
<td>WTE survey of several waste treatment facilities completed</td>
</tr>
<tr>
<td></td>
<td>11/30/06</td>
<td>Enriched paper mill inoculum source and/or ATCC Sphaerotilus culture ready for testing</td>
</tr>
<tr>
<td></td>
<td>4/1/07</td>
<td>Decision Point #2 – PHA produced from a PPE source by indigenous or inoculated laboratory cultures at (\geq 1 \text{ wt%}) of the dry cell mass</td>
</tr>
<tr>
<td></td>
<td>8/1/07</td>
<td>Unsupplemented PHA from PPE completed</td>
</tr>
<tr>
<td>3</td>
<td>12/15/07</td>
<td>PPE supplements & production criteria for pilot test defined</td>
</tr>
<tr>
<td></td>
<td>12/15/07</td>
<td>In situ PPE process requirements for pilot test defined</td>
</tr>
<tr>
<td></td>
<td>8/15/07</td>
<td>Material & properties defined for waste-PHA composites</td>
</tr>
<tr>
<td>4</td>
<td>8/15/07</td>
<td>Decision Point #3 - Wood/purified PHA composites with integrated cell debris produced having MOR (\geq 2000 \text{ psi}) and MOE (\geq 0.25 \text{ Mpsi})</td>
</tr>
<tr>
<td></td>
<td>10/15/07</td>
<td>Basic processing conditions defined for pilot test</td>
</tr>
<tr>
<td></td>
<td>4/1/08</td>
<td>Formulations identified for pilot extrusions</td>
</tr>
<tr>
<td></td>
<td>12/15/07</td>
<td>Pilot test plan completed</td>
</tr>
<tr>
<td>5</td>
<td>2/15/08</td>
<td>Supplemented or unsupplemented PPE biosolids produced for pilot extrusions</td>
</tr>
<tr>
<td></td>
<td>7/15/08</td>
<td>Pilot extrusions completed</td>
</tr>
<tr>
<td></td>
<td>7/31/08</td>
<td>Project completion and transition planned to technology demonstration phase</td>
</tr>
<tr>
<td></td>
<td>9/30/08</td>
<td>Final Report delivered to DOE</td>
</tr>
</tbody>
</table>
Commercialization Potential

Advantages:
- Wide range of applications
- PHAs can be competitive with HDPE in wood-plastic composites
 - Produced from “negative cost” feedstocks
 - Very little recovery/purification cost
- New profit center for pulp & paper mills
- Biodegradable; adjust processing & formulation to attenuate to desired product life
- Reduced greenhouse impacts

Economic and technical criteria:
- Competitive price for product
- Competitive properties for application
- Cannot interfere with normal mill operations
- Mill operators must integrate and operate the process onsite as a part of mill operations
Commercialization Plan

- **Barriers to Commercialization**
 - **Market** – Proper development of technical parameters in utilizing the materials in current production practices
 - **Regulatory** – None known … the reaction schemes would actually facilitate discharge levels in wastewater treatment facilities
 - **Patent** – Thorough search indicates no conflicting patents
 - **Other commercialization barriers** – Unknown willingness of mill operators to produce PHAs onsite as a normal part of mill operations

- **Commercialization/Technology Transfer Team**
 - INL & WSU have had significant prior successes in commercialization
 - NewPage’s Chillicothe mill is actively interested in new profit centers including composites
 - Approximately 30% of the wood plastic composites in the U.S.A. are produced under license from Strandex, Inc.
 - Eco:Logic operates several WTE facilities in California and the Southwest and supports green engineering practices
Project Partners

- **David N. Thompson (PI):** Idaho National Laboratory, Renewable resources utilization, fermentation to value-added products
- **Michael P. Wolcott:** Washington State University, Wood materials engineering, composites
- **Frank J. Loge:** University of California-Davis, Wastewater treatment, *in situ* PHA production
- **Katherine A. Wiedeman:** NewPage Corp., Pulp & paper mill wastewater management, pilot tests
- **Robert W. Emerick:** Eco:Logic Engineering, Inc., Municipal wastewater management, pilot tests
- **Alfred B. England:** Strandex Inc., Composites technology development and licensing, pilot tests
Acknowledgements

- Currently active research team members at the various facilities

 - **Idaho National Laboratory**
 - William Smith
 - William Apel

 - **Washington State University**
 - Jinwen Zhang
 - Karl Englund
 - Eric Coates (now at the University of Idaho)

 - **University of California-Davis**
 - Hsin-Ying Liu
 - Greg Mockos

 - **NewPage Corporation**
 - Jim Flanders
 - Natalie Bailey