Lateral Corrugator:
An Improved Method of Manufacturing Corrugated Boxes

PI: Michael Schaepe
Institute of Paper Science and Tech @ GT

Industry Partners: 13 contributors of capital, equipment and expertise
Technology Description

- Conventional corrugating does not utilize the strength advantage of machine direction fiber alignment. Compression strength enhancement by orienting the linerboard transversely can be 30% or more.

Project Goal: Develop a commercially viable lateral corrugating process including designing and building a pilot lateral corrugator, testing and evaluating the pilot machine, and developing a strategy for commercialization.
Energy Savings

- 38% of boxes, nearly all A-flute and half of C-flute, have stacking strength requirements.
- 11 million tons/yr of combined-board in US market
- Commercialization would begin immediately upon project completion and the technology would start to impact the market within one year after.
- 15% reduction in weight; 1.6 million tons fiber and 42 trillion BTU’s per year; plus reduced energy use in box making.
- Overall energy savings impact on the market includes box plant trim waste reduction, transportation savings due to increased efficiency and reduced weight, and paper machines fully trimming-out.
Other Benefits

- Lateral corrugating is a cut-to-width operation resulting in considerable benefits at the box plant and paper mill:
 - Waste reduction (bp)
 - Trim optimization (bp & pm)
 - Ability to utilize paper machine trim rolls (pm)
 - Reduced inventory (bp)
 - Shipping optimization (pm to bp)
Project Strategy

- The key technical barrier for this project is the ability to design and build a sheet feeding system that can produce viable linerboard splices at reasonable machine speeds.
- The present project barrier is the ability to design and build single-facer and double-backer glue machines for the pilot lateral corrugator.
Overcoming Key Technical Barrier

- Existing corrugating technology implemented.
- Existing sheet feeding technology to be utilized.
- Lateral corrugator has been designed as retrofit.
- Great flexibility of configuration designed in.
Glue Machines

- Machine Designer
 - Bill Nikkel, retired

- Cooperating Companies:
 - Harper/Love Adhesives Corp.; Jim Carbone
 - Pamarco
 - Harper Machinery
 - Chicago Electric
 - Arc International

- Schedule
 - Drawings approved: Sept 30, 2005
 - Glue and metering rolls: tbd
 - Variable speed drives: tbd
 - Machining and assembly: tbd
Milestones and Decision Points

- Jun ‘04 - Evaluate heat transfer properties and conduct splicer and seam analysis
- Sep ‘04 - Address economic and production considerations
- Dec ‘04 - Identify commercialization partners (ongoing)
- July ‘05 - Complete lateral corrugator design
- Dec ‘05 - Build and install lateral corrugator roll stack
- Jan ‘06 - Build and install lateral corrugator hydraulic and drive systems
- Mar ‘06 - Build and install lateral corrugator glue machines
- Apr ‘06 - Demonstrate lateral corrugator roll stack configuration (Go/No-Go Decision Point)
- May ‘06 - Complete sheet feeder and splicer design
- Nov ‘06 - Complete fabrication and integrate feeder and splicer into test stand
- Dec ‘06 - Final evaluation: conventional vs. lateral corrugator
Lateral Corrugator Drive System

Lateral Corrugator Roll Stack
Commercialization Potential

- Initially seen as a technology to reduce fiber usage and, thereby, energy consumption and cost, the greatest immediate commercial advantage lies in waste minimization, transportation optimization, and mill trim reduction.

- Designed as a retrofit and not requiring full market penetration have increased the potential for success.

- The greatest technical barrier to implementing the technology is the ability to produce viable splices at acceptable machine speeds.
Commercialization Plan

- The initial commercial installation is planned for a facility producing bulk boxes.
- The advantage of bulk container manufacturing, since utilizing heavier weight papers, is that machine speeds are typically slower.
- There are also advantages due to seam placement and the disproportionately greater strength enhancement of lateral corrugating at higher basis weights.
- CrosCorr, Steve Baughman, Kentucky location proposed
Project Partners

- **Financial Support:**
 - Temple-Inland Paperboard and Packaging
 - Smurfit-Stone Container Corp.

- **Equipment and Expertise:**
 - Corrugated Gear
 - Harper-Love Adhesives
 - Albany International
 - Container Graphics Corp.
 - Johnson Corporation
 - WIKI Instrument Corp.
 - MarquipWardUnited
 - Hardy Instrumentation
 - Corn Products
 - CUE
 - Armstrong
Contact Information

- Michael Schaepe
 Institute of Paper Sci & Tech @GT
 500 10th St, NW
 Atlanta, GA 30332-0620
 404-894-6640
 michael.schaepe@ipst.gatech.edu
 www.ipst.gatech.edu/research/projects/corrugating.html

- Acknowledgements
 - 13 Project Partners
 - DOE
 - Robert Hall
 - Mark Szlemko
 - IPST@GT
 - Perry Arrington
 - Mark Urbin