DOE’s Role in Heavy-Vehicle Idling Reduction

Edward J. Wall, Program Manager
FreedomCAR and Vehicle Technologies Program
Energy Efficiency and Renewable Energy
U.S. Department of Energy

National Idling Reduction Planning Conference
Albany, New York
May 18, 2004

FCVT Program Mission
To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum.
--EERE Strategic Plan, October 2002--
Transportation Petroleum Use by Mode (1970-2025)

2002 Total = 13.15 mbpd

Our Oil Situation

(Millions of barrels per day)

Source of Oil
Gross Imports 59%
Domestic 41%

Consumption
Highway Vehicles 68%

Cost of Imports
$105.2 Billion (@ $25/bbl)
$168.3 Billion (@ $40/bbl)

Canada
1.97 (17.1%)

US Domestic
8.04

Mexico
1.55 (13.4%)

Venezuela
1.4 (12.1%)

Nigeria
0.62 (5.4%)

Other
OPEC
0.58 (5%)

Iraq
0.46 (4%)
DOE Believes Collaborations are the Key to Answering these Challenges
Energy Security
- Increasing dependence on imported oil
- Contributes to balance-of-payments deficit

Social Concerns and Needs
- Emissions
- Safety

Critical DOD Strategic Need
- 70% of the logistics burden in conducting military missions is moving fuel.
Goals focus on five key technology areas for heavy-duty vehicles:

- Engine Systems
- Heavy-Duty Hybrids
- Parasitic Losses
- **Idle Reduction**
- Safety

Support Research, Development and Demonstration
By 2007, demonstrate advanced 5 kW auxiliary power units (APUs) that meet performance goals and cost under $200/kW.

By 2012, develop and demonstrate 5-30 kW fuel cell APUs that meet performance goals and cost under $400/kW.

Develop new codes and standards for electrification of trucks and truck stops.

Co-sponsor conference with EPA and DOT in May 2004, establish an integrated and comprehensive Gov’t-Industry partnership.

Develop mix of incentives & regulations that encourage users to find more efficient and environmentally-sustainable ways to meet their power needs at rest.

Establish educational efforts for truck and bus owners & operators to implement enabling technologies and operational practices eliminating unnecessary idling.
GOAL: To maximize the introduction and use of idle reduction technologies in heavy-duty trucks

Objectives
- Data collection/demonstration - in-use information on the performance of on-board idle reduction technologies
- Identify and implement strategies to overcome critical cost barriers inhibiting broad market introduction.
- Education and outreach - increase knowledge, awareness, and acceptance of idle reduction technologies within the trucking industry and public at large
Caterpillar, International Truck, and Cox Transfer
- MorElectric technology
- Electrically-driven accessories
- Project start 4Q, FY03; Culminates 4Q, FY05

Schneider National, Freightliner, and Webasto Thermosystems
- Webasto Air Top cab heater (diesel-fueled air heater)
- Webasto cab cooler (phase change cooling storage technology)
- Project start 4Q, FY03; Culminates 2Q, FY05

Espar, Wal-Mart, Truck manufacturer TBD
- Espar Airtronic Bunk heater (diesel-fueled air heater)
- DC Airco (rooftop-mounted electric A/C unit)
- Project award Spring FY04
Focus: Integration of full function (heating, cooling, and electrical) on-board idle reduction technologies into heavy-duty trucks as factory-installed options

Solicitation Parameters

- Teaming requirements – Truck OEM (lead), idle reduction technology manufacturer, and fleet (preferably)
- $300-500K in total funding; 2-3 awards; 2 year-duration
- 50/50 cost share
- Summer 2004 release
- Award 4Q, FY04 – 1Q, FY05
Next Steps

- We are recruiting working group members to help craft the plan.
- Areas of particular interests are:
 - R&D
 - Financial
 - Regulatory
- Please give Lee Slezak, Diane Turchetta, Paul Bubbosh, or Heather McKee your name so that they can contact you with the schedule to develop the plan.