Almost 25 million tons of food residuals were landfilled in the United States in 1999, nearly double the amount of just ten years ago, according to the U.S. EPA. The agency recently declared food residuals to be the leading methane source (by unit volume) coming from MSW landfills, which are the top producers of methane in the U.S. In Georgia, rising volumes of food and other organic residuals are increasing demands on landfills. To address this, the University of Georgia's (UGA) Engineering Outreach Program of the Department of Biological and Agricultural Engineering and the Pollution Prevention Assistance Division of the Georgia Department of Natural Resources have teamed up to research, educate and implement strategies in waste reduction, by-product recovery and pollution prevention.

A pilot study was initiated in the fall of 1999 to recycle institutional food residuals at the Bioconversion Research and Education Center on the UGA campus. The objectives were to: Determine whether an aerated composting system could be used to recycle all the university's food residuals; Evaluate the speed and function of the system; Assess the impact of three mixing ratios on the composting process; Determine the amount of leachate produced per unit weight of food residuals; Evaluate odor levels based on ammonia and hydrogen sulfide concentrations; Meet EPA Part 503 temperature requirements to eliminate plant and human pathogens; and Determine air flow rates based on the amount of food residuals in the container composting system.

PROCESSING CAFETERIA RESIDUALS INTO COMPOST

The study involved all four of the university's cafeterias, which together serve 19,000 meals/day. Feedstocks included one week's worth of preconsumer and postconsumer food residuals and soiled paper, and ground yard trimmings added for carbon, moisture reduction and bulking. Food residuals were pulped at the cafeteria to reduce moisture content ten to 20 percent, resulting in an average of 71 percent moisture. The materials were loaded into six Earth Tub in-vessel containers (manufactured by Green Mountain Technologies) that hold 3.5 cubic yards of material. A 2 HP vertically mounted, manually rotated auger mixed feedstocks as they were loaded through a hatch on the lid. Each container had an aeration system with a 10-watt blower to pull air through the compost from the top, then through a perforated floor chamber for release. The blowers were run continually at maximum power unless the compost seemed to dry too quickly, at which point they were turned off until moisture and temperature levels returned to optimum levels. The floor chamber collected leachate and discharged it through the blower aperture.

The containers were kept inside a building and measured for temperature every five minutes. Air velocity and air flow rates were measured from the center of the PVC pipe attached to the blower using a hot-wire anemometer. Following this, each pile was turned using the motorized auger. When moisture content fell below 40 percent, water was added during turning to bring the level up to 60 percent. Stable compost was achieved for all three mixture ratios after 73 days. Compost was then screened to remove contaminants.

RATIOS AND COMPOST QUALITY

Initially, three recipes were selected for investigation. These included volumetric mixing ratios of 1:1 (food residuals:yard trimmings), 2:1 and 1:2. The mixture ratios proved...
plants for these compost sample mixes. Measures of samples from 28-day-old and cured compost indicated that bulk density increased significantly. The dry bulk density at 28 days averaged 111 kg/m³ while the cured compost averaged 136 kg/m³. Interestingly, bulk densities varied among treatments and trials, due perhaps to factors such as moisture content, initial bulk density, ambient air temperatures during the process and variability in climate conditions while curing. The differences among treatments might also be a result of aeration method. The TDA-1 and CFAA-1 treatments' average bulk densities were significantly lower than the other treatments' bulk densities for samples taken at 28 days. The one-hour aeration treatments had higher pressure air injection, which may have counteracted settling of the compost during the in-vessel phase. Samples from cured compost had similar differences in bulk density between the one-hour and half-hour frequency treatments, which suggests that the bulk density when curing began was a factor in the final product bulk density.

Overall, it appears that aeration method did not affect nutrient content as much as air temperature, moisture content and mix differences. Except phosphorus, all nutrient concentrations for the 28-day and cured composts were significantly different. For the compost samples, phosphorus averaged 0.65 percent by weight. Average calcium content decreased from 12.0 percent at 28 days to 8.0 percent when cured, and magnesium averaged 0.56 percent at 28 days and 0.38 percent after curing. Nitrogen averaged 1.27 percent at 28 days and 1.34 percent for the cured compost. Potassium content averaged 0.27 percent for the 28-day compost samples and 0.43 percent for the cured compost.

The 28-day compost had an average pH value of 8.0 while the cured compost had an average pH of 7.4. The cured compost had electrical conductivities ranging from 3.2 to 5.5 mohs/cm, reasonable values for potting media. Samples at 28 days had conductivities ranging from 4.3 to 8.5; electrical conductivities higher than 6 are not optimal for high-end uses. However, the salinity at 28 days did not inhibit growth in the bioassay test. (It is assumed that the loss of salts between the 28-day compost and the cured compost resulted primarily from leaching from exposure to rain and snow, not the curing process itself.)

CONCLUSIONS
For the test bins used, the one-hour aeration interval had more consistent results than the half-hour interval, but both produced a successful composting process. Temperature feedback aeration did not show clear advantages over constant-timed intermittent aeration. Indications were clear that temperature feedback control without moisture content monitoring could inhibit the composting process by drying out the feedstocks within in-vessel systems. The plenum bin design with intermittent aeration bursts from the bottom of the batch promoted more drying near the plenum, while higher pressure aeration bursts tended to improve final bulk density of compost.

The CPW-wood shaving product was high in nutrient value and was a good soil amendment even after only 28 days of composting. Bulk density and pH were good quality, but electrical conductivity of the 28-day compost was sometimes higher than desirable for high-end uses such as potting media. All of the cured compost had good levels of electrical conductivity for high-end uses. Wheat bioassays showed no phytotoxic limitations of the compost at 28 days or once cured.

Compost from CPW can be a high quality product that is very suitable for many uses. However, more complete control of the process is needed to produce consistent quality. This study has shown that various intermittent aeration strategies are not the only process control that must be evaluated. Future research will address interactions of oxygen, moisture content and temperatures for compost process control. Moisture content of the compost and oxygen content of the compost air are the two other components of the process that would need monitoring. The test bins could be adapted to monitor moisture content and oxygen in order to study and develop control method recommendations.

Rose Mary Seymour is an assistant professor of Bio-Resource Engineering at the University of Maine in Orono.
beneficial for varying situations. A 2:1 ratio of food residuals and paper to yard trimmings was optimum for waste reduction purposes, but ammonia and leachate problems were a concern. At times, high ammonia levels made working conditions uncomfortable, particularly with the 2:1 mixture. Ammonia concentrations peaked at 560 ppm, but decreased dramatically after the first month. There were no detectable levels of hydrogen sulfide. Leachate production ranged between one liter per 14 kg of food residuals to one liter per 27 kg. Most leachate was produced in the first week; all of it was generated in the first two weeks. A 1:2 mixture of food residuals to yard trimmings may be suitable if there is an abundance of yard trimmings and space; however, moisture contents must be monitored closely as this mixture tends to dry out quickly. As expected, this formula produced less leachate, ammonia and observable odor.

All treatments attained EPA standards of 55°C (131°F) for 72 hours. Temperatures fluctuated rapidly as moisture contents fell below 35 percent and when forced aeration was terminated. All three mixtures contained less than 1.5 percent (dry weight) total human-made inerts, meeting U.S. Composting Council recommendations for quality compost. The quarter-inch screened compost ranged from 0.4 to 0.6 percent contaminants and inert. Generally, the more food residuals in the initial mixture, the higher the nutrient content in the finished compost. Soluble salt content positively correlated with the amount of food residuals, probably due to the high salt content of cafeteria foods.

Air flow rates decreased dramatically in the first two weeks — probably due to reduction in pore space from the initial breakdown of the feedstocks — and leveled off for the remainder of the study. Oxygen levels fluctuated between ambient (20.6 percent) and 18 percent throughout the trial. All treatments composted at nearly the same rate. Weight reductions ranged from 75 to 80 percent (wet basis) and volume reductions ranged from 55 to 61 percent (wet basis).

AERATION AND PRODUCT QUALITY

More frequent turning may reduce the observable odor and amount of ammonia leaving the composting system, leading to a higher nitrogen content of the finished compost and less air pollution from volatilized nitrogen. Leachate recycling could reduce water amendments to each treatment. A variable speed aeration system may help to reduce drying of treatments and subsequent need for water additions. In conjunction, variable speed...
Professional Services

Robert Tardy & Associates, Inc.
Residuals Management & Composting
Design and Feasibility Review
Arvada, CO 80005-3565
(303)423-4100
rtacompost@cs.com

Shereneta Environmental Consultants, LLC
Organics Composting Specialists
Facility Design Review • Operational Plan Development
Process Monitoring Plan Development • Operator Training
Facility Inspection • Facility Laboratory Design
3319 Oregon Place
Bellingham, WA 98226
Phone/Fax: (360) 650-0448
CompostLLC@home.com

Fibrestone Technical Affiliates, Inc.
Glass Fiber Reinforced Concrete Aeration Plates
For Composting Floors and Bioreactors
Hendersonville, North Carolina (828) 891-7474
Website: http://www.fibrestone.com
Email: das@kennet.com

Synagro
A Residuals Management Company
Land Application • Composting • Lime Stabilization
Lagoon & Digester Cleaning • Dredging & Pumping
Transportation & Disposal • Drying & Pelletizing
Corporate Office:
1800 Regents Drive, Suite 1005
Houston, TX 77057
National (800) 370-0035 • Fax (713) 356-1750

Wessuc
973 Alborton Rd., Jerseyville, Ontario, LOR 1R0
518-752-0837 • Fax: 518-752-0840
www.wessuc.com • hank@wessuc.com

EnviroConn
www.enviroconn.com
1273 46th Street
West Des Moines, Iowa 50266
Phone: 515-235-3110
E-Mail: marketing@enviroconn.com
"Your Environmental Connection to Internet Solutions"

Professional Services

FUTURE DIRECTION

A recent study at a Midwestern university found that the total cost in disposal fees for service waste at one cafeteria, including water, energy and sewer (but not tipping fees), was $3,582/year. Based on 357 tons of food residuals at $35/ton, annual tipping fee for UGA through composting would be $12,500. This is in addition to savings from reduced expenditures in off-site hauling, compost and fertilizer purchasing, and water, energy and sewer fees. However, UGA would need 58.3-cubic yard containers to compost all of its food residuals on a continual basis. Since this would be cost and spatially prohibitive, other systems are being investigated.

Finished compost from the pilot study was land applied in roadside demonstration plots utilizing surface application and soil incorporation techniques at the Bioconversion Research and Education Center. Study results are being used to incorporate food residuals into the university's composting program, which processes yard trimmings and animal bedding in windrows.

UGA is developing a comprehensive food residuals compost program that will include demonstrations for industrial, commercial, institutional and residential waste generators. It is providing technical assistance to Organic Diversion Recycling and Creative Earth of Athens, Georgia in composting food residuals from nearly 40 restaurants, grocery stores, coffee shops, food processors, and local food banks. The university is providing outreach to area schools to develop a compost science curriculum and on-site composting of cafeteria food scraps. A demonstration and education site in Atlanta that incorporates community and industrial food residuals composting on an urban farm is almost complete. UGA has recently begun providing technical assistance to Emory University to begin composting campus cafeteria food residuals.

Britt Faucette, K.C. Das and Mark Risse are with the University of Georgia's Department of Biological and Agricultural Engineering. For more information or a complete copy of the study, contact Faucette at (706) 542-4768 or britt_faucette@hotmail.com.