

Developed by

Western Massachusetts Coalition for Occupational Safety and Health Funded by The Toxics Use Reduction Institute Spring, 2002

Cosmetology

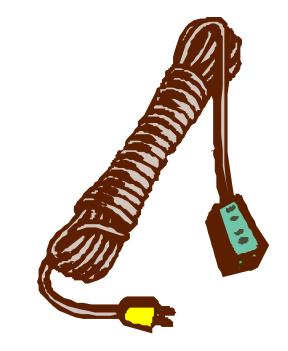
Health Hazard Overview

- W *What* is the hazard?
- **E** How does it *enter* my body?
- **E** How am I *exposed*?
- **D** What can I *do* to limit my exposure?

AREC Health and Safety Model

Anticipate Recognize **E**valuate Control

Anticipation: Preparing to deal with hazardous products in the salon.


Recognition: Identifying the products involved and the dangers they present.

Evaluation: Discovering how these products can cause illness and harm the environment.

Control: Selecting methods and products to eliminate or reduce any danger.

Safety Hazards

- Pose an immediate risk of a sudden, traumatic injury.
- Examples: burn, electric shock, explosion, fall, etc.

Health Hazards

Can cause disease or

interfere with the normal operation of your body.

- Includes exposure to:
 - Chemicals hazardous products
 - Biologicals bacteria, viruses, mold
 - Noise equipment
 - Extreme temperature equipment

Difference Between: *Health* and *Safety* Hazards

- Heath hazards can show up immediately or years after an exposure.
- Some of the symptoms caused by health hazards, such as itchy eyes, headache or a rash, are very common.
- People react differently to the same health hazard, but more similarly to a safety hazard.

What Makes A Chemical *Hazardous* to Your Health?

• Toxicity - ability of chemical to do harm

• **Dose** - amount your body receives

• *Duration and Frequency* - length and number of times you are exposed

• Vulnerability - your body's sensitivity

What Makes A Chemical *Hazardous* to Your Health?

- *Timing and Age* when in the physical development of your body you are exposed
- *Routes of Exposure* the way that you come into contact with a chemical
- *Response* how your body handles it (metabolism)
- *Reaction and Interaction* the chemical's reaction with other chemicals that you are exposed to

The ability of a chemical to harm a person or animal.

Toxicology

Is the study of the effects of chemicals on living organisms.

Toxicity

Toxicity of a chemical in the body is determined by:

- The amount of chemical absorbed (dose).
- Whether the by-products (metabolytes) of the chemical from being processed by your body are toxic.
- The ability of the body to detoxify and eliminate the chemical and its by-products.

Transport of Chemicals in the Body

• Absorption

The process by which a toxic agent crosses body membranes (e.g. skin and eyes) and enters the bloodstream.

• Distribution

Once in the bloodstream, a chemical can be distributed throughout the body.

Fate of Chemicals in the Body

• Metabolism

Is the process that breaks down a chemical so it can be excreted.

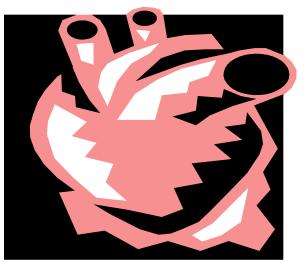
• Excretion

Is the elimination of substances from the body. Excretion can occur by several routes including perspiration, respiration, human milk, urine, feces.

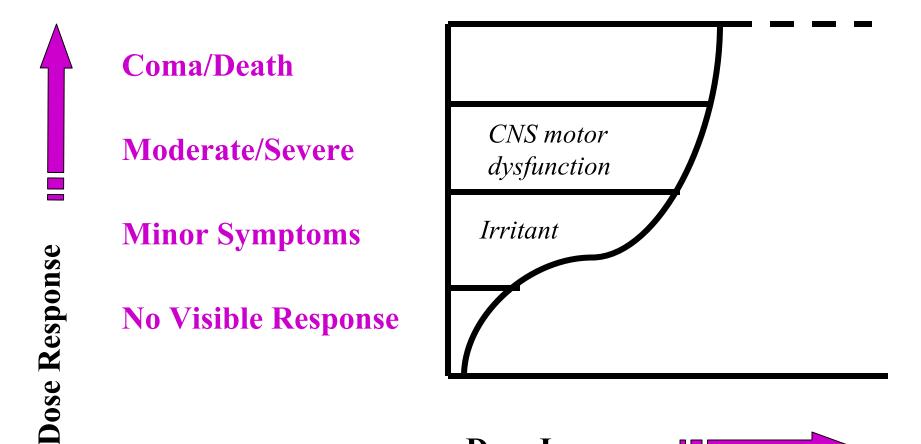
• Storage

Some chemicals that are fat-soluble are stored in body cells.

Target of Toxicant *What does it affect?*

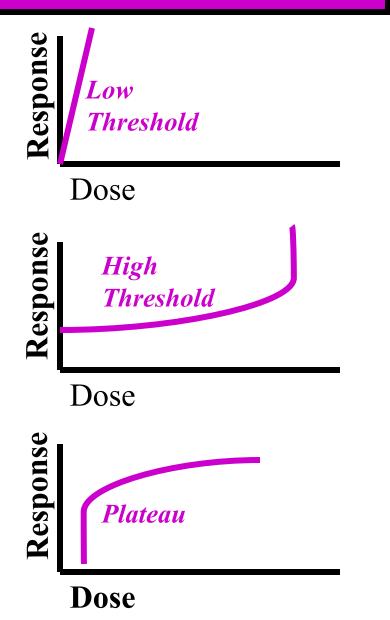

Can disrupt:

• A cell


• An organ

• A person's system

- *Dose* refers to:
 - The amount of chemical you absorb and that reacts with the body, *and*
 - The amount of time you are exposed to a chemical.
- *Response* is the biological effect caused by the exposure. The larger the dose, the greater the response or "damage." Larger doses can be caused by an increased:
 - concentration of chemical
 - length of exposure



There are two ways that your body can react to a dose:

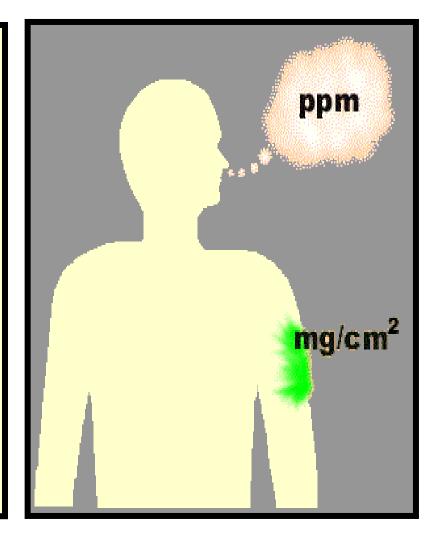
- 1) Reacts to any dose, regardless of amount
- 2) Reacts when there is a certain amount,

"Threshold"

LD 50 *Lethal Dose* of a substance that could kill 50% of an animal test population.

LC ₅₀ *Lethal Concentration* of a substance in the air that could kill 50% of an animal test population.

If the LD_{50} is low, then the product is very toxic!


Concentration

It is measured by:

• Per unit mass or weight (mg/kg)

• Per unit area of skin surface (mg/cm2)

• Per unit volume of air inhaled (ppm or %).

Duration and Frequency

Exposures impact the body based on *how long* and *how often* you are exposed:

Acute: A single, short-term exposure from a minute to a few days, or

Chronic: A repeated exposure over a period of time from months to years.

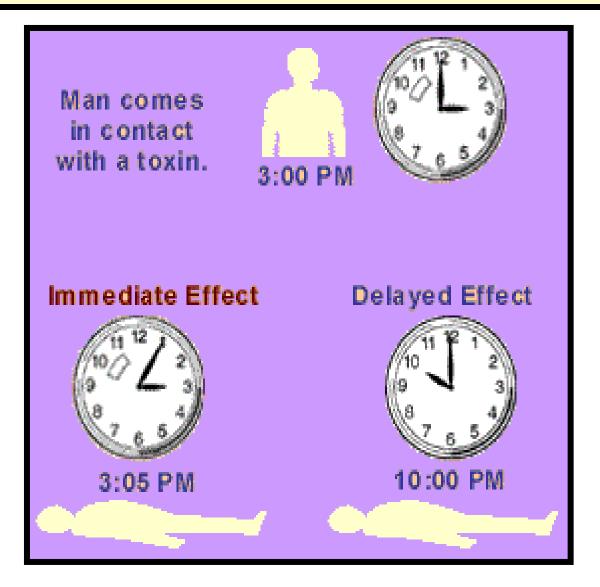
Acute Health Effects

- Generally caused by high doses
- Appear immediately or shortly after an exposure

• May be minor or serious

Chronic Health Effects

- May take years to show up.
- Usually caused by many repeated exposures to a low level exposure over a period of time.
- Effects are usually permanent:
 - Some chemicals accumulate in the body.
 - Damage does not have a chance to be repaired due to constant exposure.



Example: Asthma from Hairspray

Chronic Health Effects

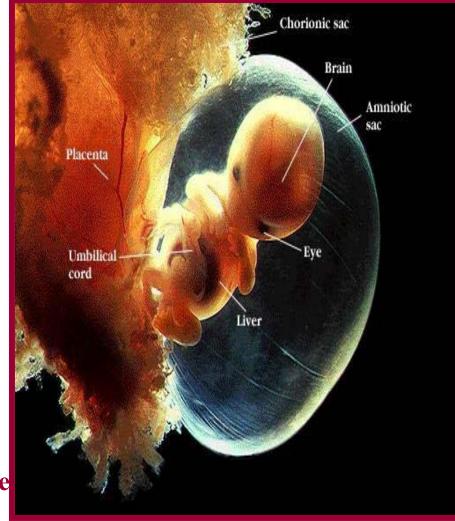
- If the amount of time, "8 hours", that you're exposed to a chemical, is more than the amount of time you need to eliminate the chemical, then you accumulate the chemical.
- You have "16 hours" away from the job, and some chemicals may take longer for your body to process and for the damage to be repaired.
- Also, if the organs (liver, kidney, lungs) that detoxify chemicals are compromised, they cannot detoxify as well.

Latency Period: Time between exposure and health effect

Your Body's Sensitivity

- Heredity/Genetics
- Age
- Pregnancy
- Gender
- Alcohol, Tobacco
- Diet
- Lifestyle

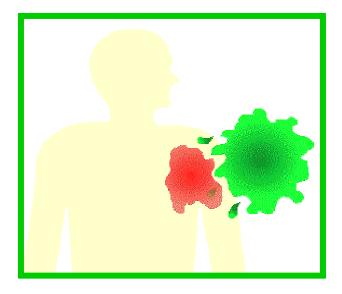
- Existing health condition
 - Weight
 - Other medications, drugs, chemicals
 - Previous exposure

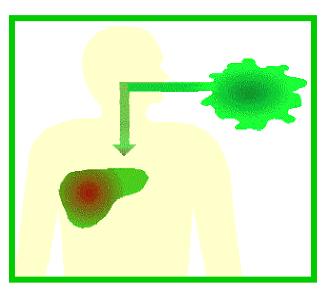

Timing of Exposure and Age

- *Elders* Have weaker immune systems.
- *Adults* Are the least vulnerable.
- Children
 Are still devel

Are still developing their immune systems.

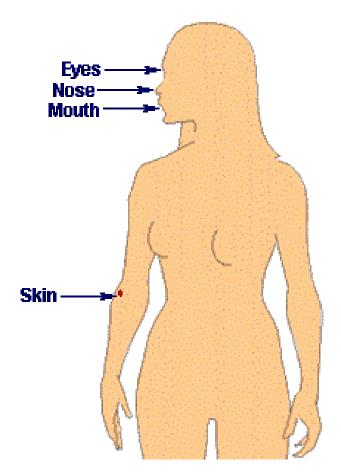
• Fetus


Are still developing their body systems. The system damaged depends on what stage of development the fetus was when the exposure occurred.



How Does A Chemical Affect Your Body?

• Local Effect


- When there is an effect at the *location* the chemical came in *contact* with your skin, eyes, nose, throat, lungs.
- Examples: burns, rash
- Systemic Effect
 - When the chemical passes through the skin or lungs, distributed into the *blood stream* and to an *organ*.
 - Example: kidney damage
- Local and Systemic Effects
 - Some chemicals have both effects.
 - Example: Phenols in disinfectant

How Do Chemicals Get into Your Body? Routes of Exposure

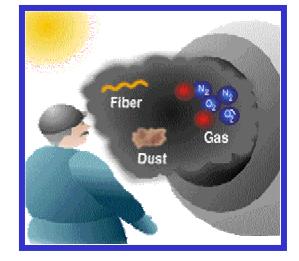
- Breathing (Inhalation)
- Swallowing (*Ingestion*)
- Piercing of skin (*Injection*)
- Skin Absorption
- Eye Absorption

Routes of Exposure: *Breathing*

A major route of exposure for the Cosmetologist and Customer

Respiratory System

- Nose
- Throat



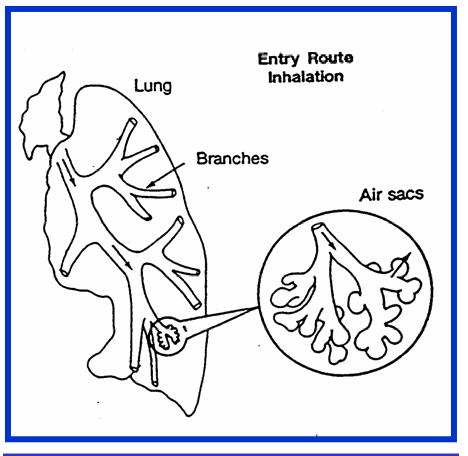
- Air-tubes
- Lungs

If you spread out a human lung, it would cover an area the size of a tennis court!

Routes of Exposure: *Breathing*

- What forms can be inhaled?
 - gases, vapors, mists
 - particulates
- What activities generate these forms?
 - Vapors from mixing and using products, and sterilizing solution
 - Powders from product mixing and buffing
 - Fine mists from hairsprays which can stay in the air for long periods.

What can happen to a chemical when you breath it in?


• Stays in lungs

 Carried into bloodstream

• Exhaled

Coughed out

Why can't you use your sense of smell to tell if you are getting exposed to chemicals?

- Some chemicals do not smell.
- Sometimes, by the time that you smell it, it is too late.
- Our noses can get used to smells or can be exhausted by them.
- A cold or allergy can effect your ability to smell.

Salon Respiratory Hazards

Vapors from mixing ingredients

Vapors from nail products

Aerosols

- Aerosols have three components:
 - Propellant
 - Solvent
 - Active ingredients
- Aerosols can affect your body by:
 - Destroying cilia in air tubes.
 - Building up in lungs is the hair sprays uses resins to hold hair in place.
 - Causing asthma.

Routes of Exposure: Skin

How can chemicals affect your skin?

 Can harm skin directly
 Can pass through skin directly and enter bloodstream

> This is one of the major routes of exposure for the Cosmetologist and the Customer

Routes of Exposure: *Through the Scalp Why is it a major route of exposure for the client?*

- The scalp has the richest blood supply in the body.
- The hair follicles are the largest in the body.
- There are a large number of sweat & sebaceous glands.
- It is a large surface area.

Routes of Exposure: Skin

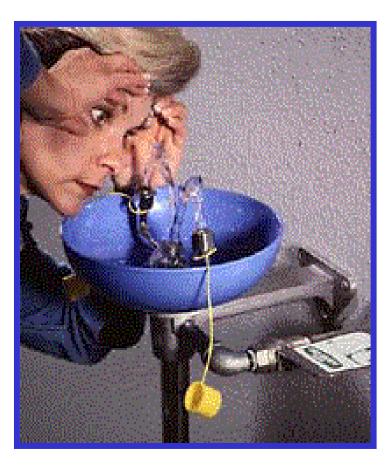
- Exposure can come from solids, liquids, gases.
- Chemicals more readily enter through the skin on the scalp and on scrotum than any where else on the body.

Graphic from Milady's Standard Book of Cosmetology, 2000

Routes of Exposure: *Skin What Activities Increase Absorption?*

Absorption is enhanced by:

- Breaking top layer of skin (cuts and cracks).
- Wetting skin increases its permeability 2-3 fold.
- Increasing temperature of skin, which causes sweating, which can dissolve solids.
- Increasing blood flow to skin.
- Altering pH of the skin.
- Defatting the skin through the use of shampoos and solvents.

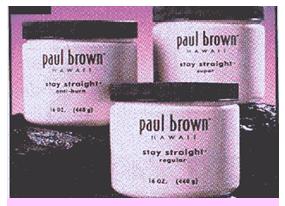

Route of Exposure: Injection

The skin must be penetrated or punctured by contaminated objects for injection to occur.

Routes of Exposure: *Eyes How can chemicals affect the eyes?*

- Chemicals can harm eyes directly.
- Eyes can absorb chemicals from mists and vapors.
- Chemicals can get trapped behind contact lenses.

Routes of Exposure: *Eyes What Are Some of the Chemicals of Concern?*


• Acids – burns

The immediate damage from acids are a good indicator of the long-term damage.

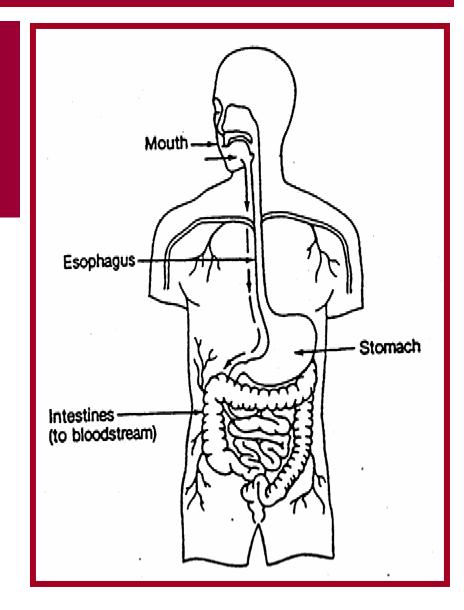
• Alkalis – burns

The immediate damage does not indicate the long-term damage which could get worse.

• *Solvents* – dissolve fats, cause pain and cloud the cornea.

Lye Based Product Sodium Hydroxide

Routes of Exposure: Swallowing


Usually Accidental!

Will cause direct harm if it

is an irritant or a corrosive.

Chemicals found:

- In food & drink laying around
- On counter where food is prepared
- On clothes, cigarettes
- On hands, beard

What Types of Adverse Health Effects Do Chemicals Cause?

- Irritation
 - Allergy
- Dermatitis
- Major Organ Damage
 - Cancer
 - Reproductive Effects

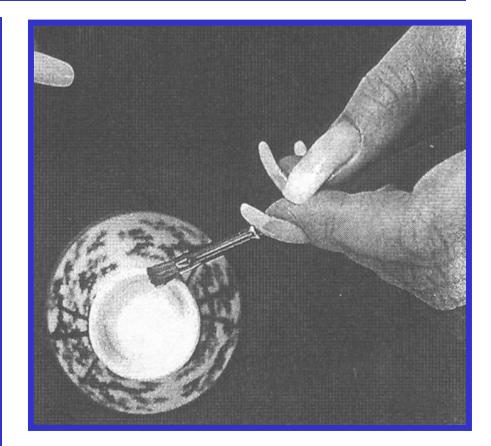
Irritants

- *Reaction* Cause an immediate reaction when they come in contact with skin, eyes, nose, throat or lungs.
- Symptoms
 - Eyes: burning, watering, itching, redness
 - Nose: runny nose
 - Throat: scratchy throat
 - Lung: cough, hard to breath
 - Skin: dry, scaly, inflamed

Allergy

- *Reaction:* An immune response and sensitization to a chemical.
- *Symptoms:* Once you have been sensitized, a chemical can cause a reaction every time you use it regardless of the amount.
 - Stuffy nose and sneezing
 - Watery eyes
 - Wheezing and coughing
 - Itchy skin rash
 - Swelling

Example: allergy to an aniline tint



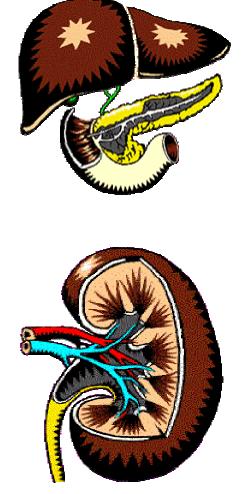
Example: latex allergy

Allergic Sensitizers

 A chemical that causes people to develop an allergic reaction after exposure to it.

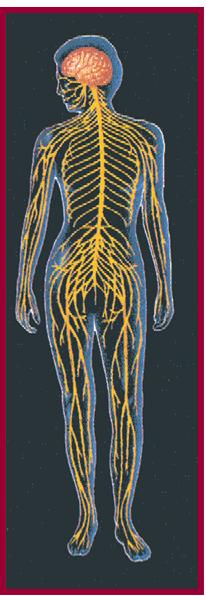
- Could have:
 - Acute reaction rash
 - Chronic reaction asthma

Examples: • EMA in Acrylic Nails • Formaldehyde in nail finishes


Dermatitis

The most common health hazard for cosmetologists!

- Reaction:
 - An inflammation of the skin, "skin rash"
- Types:
 - Contact: with a skin irritant
 - Allergic: an allergic reaction (from skin contact or breathing in)
- Symptoms:
 - Flaking, dryness, redness
 - Itching, burning of the skin


TARGET ORGAN TOXICITY

- As the bloodstream circulates toxic chemicals throughout the body, every organ is in contact with the material.
- Many poisons also show a selective affinity for a particular organ and produce specific effects on them:
 - Neurotoxins affect the nervous system
 - Hemotoxins affect circulatory system
- The liver and kidney aid in removing poisonous substances. However, some toxic substances also accumulate in these same organs.

Example of a Target Organ Effect *Neurotoxicity - Central Nervous System*

- Reactions:
 - breathing a chemical in or getting it on skin
- Effects Peripheral Nervous System (arms, legs)
 - Motor: weakness, uncoordinated, fatigue, tremor
 - Sensory: numbness, tingling, visual or hearing problems
- Effects Central Nervous System (brain)
 - Thought Processes: memory loss, confusion
 - *Emotional State:* nervousness, irritableness, depression, apathy, mood swings
- Examples:
 - acetone, acetates, and toluene in nail products

Cancer

• Reaction:

- A carcinogen alters genes that control cell growth.
- Causes uncontrolled growth and spread of abnormal cells.

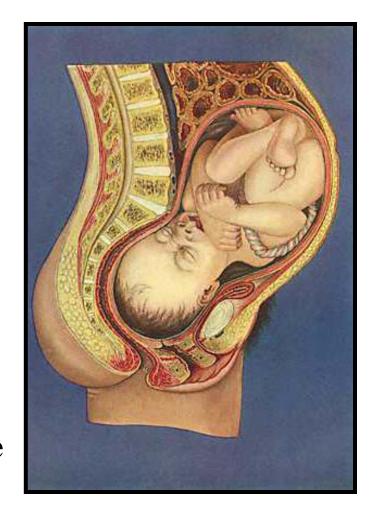
• Symptoms:

- Has long *latency period*, may not show up immediately.
- May show up as tumors.

Example: Coal Tar Dyes

Will you always get *Cancer* if you are exposed to a *Carcinogen?*

No, but your risk is higher if:

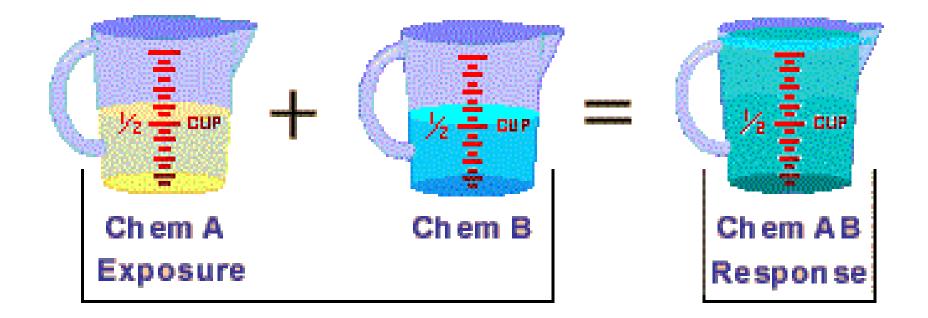

- You are exposed over a *long period of time*, or
- You are exposed to a *large amount*

Anyone who is exposed:

- *can* get cancer but not everyone *will* get cancer.
- there is *no way* to measure a safe amount.

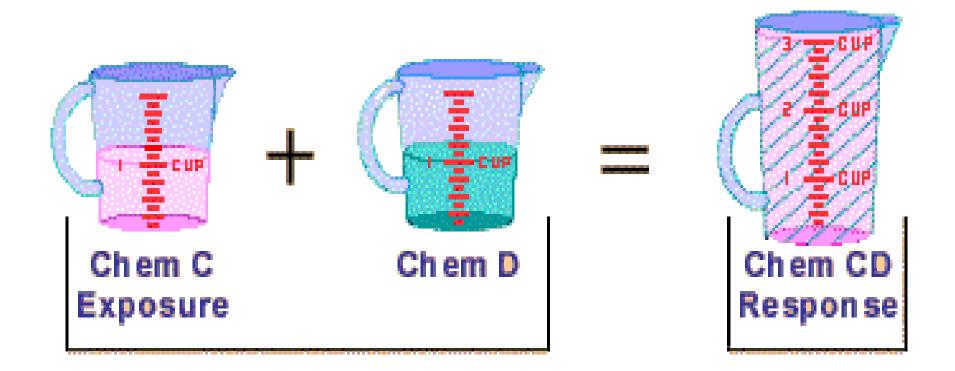
Reproductive Hazards

- *Mutagens* change genetic information in egg or sperm, e.g., cancer
- *Teratogens* damage developing baby in the womb,
 e.g., birth defects
- Damage to Reproductive Organs in men and women, e.g., sterility, impotence, miscarriage



Effects of Chemical Combinations

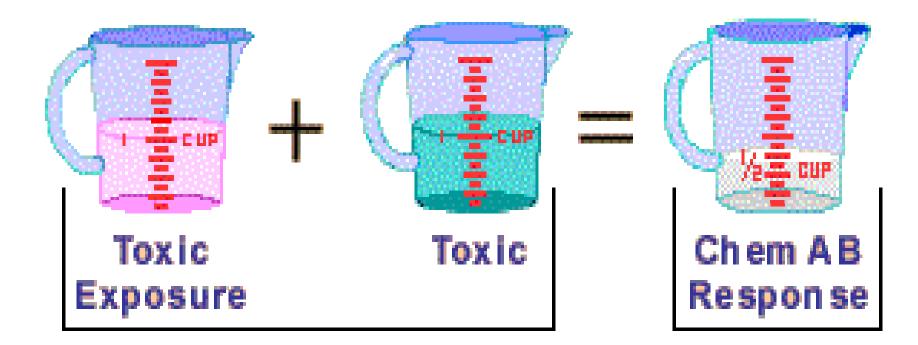
When some chemicals combine, they can produce different effects than they do individually.


These combinations are called:Additive Reaction2+2=4Synergism Reaction2+2=6Potentiation Reaction0+2=4Antagonism Reaction2+2=2

Additive Reaction 2+2=4

Two chemicals are combined and produce an effect equal to the sum of the two chemicals.

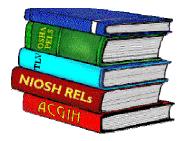
Synergism Reaction 2+2=6


Two chemicals are combined and produce an effect that is greater than the sum of the effect of each agent given alone.

Potentiation Reaction 0+2=4

Is a type of synergism where one chemical (the potentiator) is not usually toxic if present alone, but has the ability to increase the toxicity of other chemicals.

Antagonism Reaction 2+2=2


Occurs when two chemicals are combined and they interfere with each other's actions or one interferes with the action of another chemical.

Smoking and Chemicals

- Smoking increases the number of chemicals in your body.
- The combined effect of chemicals from the smoke and chemicals you work with put you at greater risk.
- Smoking damages your lung's ability to protect themselves.
- Chemicals on your hands or in the air can get on your cigarettes, and you can breathe or swallow them when you smoke.

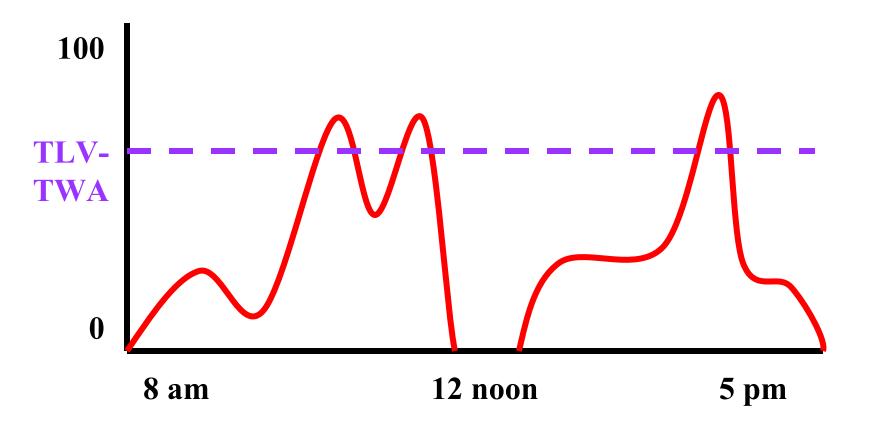
Exposure Guidelines: *Permissible Exposure Limits*

P - PermissibleE - ExposureL - Limit

Over 20 years old!

- The maximum chemical exposure limits for workers for an 8 hour day during a 40 hour work week.
- Occupational Safety and Health Administration (OSHA)
- Enforceable
- Assumes that the worker:
 - Has a 16 hour rest period in between exposures
 - Is not exposed to anything else
 - Is healthy

Exposure Guidelines: *Threshold Limit Values*



T - Threshold L - Limit V - Values

- *Air* concentrations of chemicals that workers can be exposed to without adverse effects.
- Developed by the American Conference of Governmental Industrial Hygienists (ACGIH)
- Not enforceable.

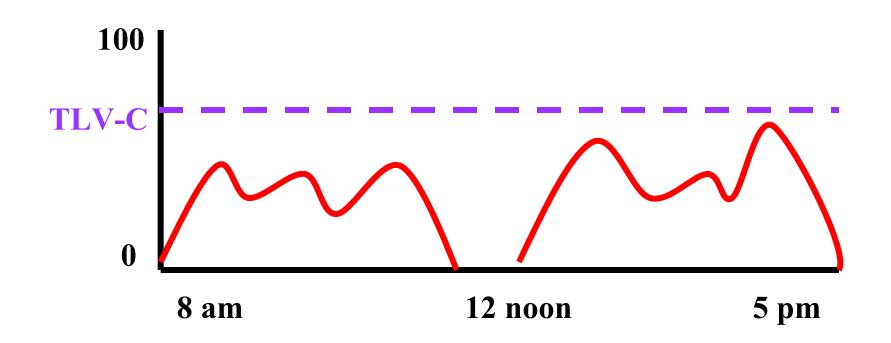
Exposure Guidelines:

Threshold Limited Value - Time Weighted Average

The TWA for an 8-hour work day, 40 hour work week

Averages the concentrations of exposures based on the duration of each exposure.

Exposure Guidelines: *Threshold Limited Value -Short-Term Exposure Limit*



S – short	Sets worker exposure for:	
T – term		
E – exposure L – limits	• Up to 15 minutes at a time	
	• Up to 4 times a day	
	• With at least 60 minutes in between successive exposures	

Exposure Guidelines:

Threshold Limited Value - Ceiling

Ceiling level should never be exceeded!

Exposure Guidelines

Immediately Dangerous to Life and Health

- I immediately
- D dangerous to L – life and
- H health

- Exposure at that concentration
 would cause death or
 permanent adverse health
 effects.
- The lower the number, the more hazardous the chemical.
- National Institute of Occupational Safety and Health (NIOSH)

Exposure Guidelines *Recommended Exposure Limits*

R – recommended	•	NIOSH recommendations
E – exposure		
L – limits	•	Not enforceable
	•	Similar to TLVs
	•	Often lower than PELs

Hierarchy of Controls

 Product Substitution Engineering Controls Work Practices Personal Protective Equipment