

Overview of this chapter

- Why are motors important?
- What is a motor?

- The electric motor system
- Optimizing the motor component
 - efficiency and losses
 - standards
 - motor/load relationships

Industrial Electricity Use

Source: DOE presentation, March 1999: Introduction to Motor Systems Management

Industrial motor energy use by application

Source: <u>United States Industrial Electric Motor Systems Market Opportunities Assessment</u>, Office of Industrial Technologies, Office of Energy Efficiency and Renewable energy, US DOE, December 1998, Table 1-16, page 43

Motor size profile compared to energy use

PADEP E2 Training Program

Source: OIT pg. 40

What is a motor?

Source: <u>Energy-Efficient Motor Systems: An Handbook on Technolo-Qy, Programs, and Policy Opportunities</u>, 1991, American Council for and Energy-Efficient Economy.

How a Motor Works

Source: The Lincoln Electric Company

Three-phase power

- Alternating current (AC) reverses the poles of the electromagnet
- AC reverses direction 60 times per second (60 Hz) (i.e. 3600 times per minute)
- The number of magnetic poles in a motor determines its speed

The Electric Motor System

The Systems approach

- Proper integration of all components of a system
- Maximize the ratio of product output to energy input

Optimizing the motor system - MOTOR

Motor efficiency and losses

Cost of Inefficient Motors

100-hp motor, \$0.05/kWh electricity 3 shifts, 15-year life

Motor efficiency "standards"

NEMA (National Electrical Manufacturer's Association) defines energy efficient motors

EPACT 92 (Energy Policy Act of 1992)

High- or Premium-efficiency varies by manufacturer

Efficiency and cost

Motor/load relationship

Idle Running

No-load losses can be significant
Low hanging fruit potential
Idle motor shut-off should be automated/controlled

Efficiency at low load

- The efficiency of a motor is reduced when operating at partial load
- This is very common because:
 - Motors must be sized for the worst case, highest load condition
 - motors are often oversized
 - load/process requirements change

Motor efficiencies and costs

Motor efficiency by size

Sample motor calculation

Given:

- New, 50-hp, TEFC, 1800-rpm, 4-pole motor
- Energy efficient motor" efficiency: 92.4%
- EPACT efficiency: 93.0%
- Premium efficiency: 94.5%
- Best available: 95.0%
- Determine: payback

Motor calculation: exercise

Given: 100 hp, ODP, 1800-rpm, inverterduty motor

Determine:

- "energy efficient motor" efficiency
- open motor EPACT efficiency
- NEMA efficiency
- best available efficiency
- payback

Power factor

What is power factor?

- Ratio of real power (kW) to apparent power (kVA). Power factor is low at low load because while the real power approaches the motor losses, the reactive power (kVAR) which creates the magnetic field is constant.
- Use capacitors to improve power factor
- Heat generation and temperature riseProper sizing

Motor performance as a function of load

- Data from MotorMaster for Leeson "Wattsaver" 100-hp, 460 V, 1780rpm inverter-duty motor
- Show percent power draw for comparison

Motor challenge program

Sponsored by the US Department of Energy (DOE)Call 800-862-2086

- Call 800-802-2080
- www.motor.doe.gov