A Study of Lead-Free Solders

Lead-Free Soldering-

FEAR

- Legislation
- Trade barriers
- Competition

Resistance to Changing to Lead-Free Soldering

– Incidental

Reliability concerns

 Solder joint quality
 Component and substrate temperature damage

Lead-Free Alloy Requirements

- A great deal of effort has been put into the development of lead-free solder alloys.
 - Certain criteria must be taken into account and met before a leadfree solder may be put into use:
 - Physical reliability
 - Temperature requirements
 - Compatibility with parts and processes
 - Repairs and rework

Searching for a Suitable 🦟 Alloy

- Using the periodic table of elements, AIM began to search for a suitable lead-free alloy.
- Several metals were quickly removed as potential base materials:
 - Bismuth- embrittlement, thermal fatigue
 - Cadmium- toxicity
 - Gallium- availability, cost, embrittlement
 - Indium- cost, availability, thermal fatigue
 - Zinc- corrosivity, oxidation, ease of use

Melting Points

- As a general rule, most leadfree solders melt at higher temperatures than those of Sn/Pb.
- There are two main exceptions to this:
 - Indium alloys
 - Bismuth alloys

Indium Alloys

- The main disadvantage of Indium is its cost.
- Another problem is supply (80-100 tons/year).
- Indium alloys also suffer from poor resistance to corrosion and rapid oxide formation during melting.
- Indium based lead-free solders are best used with temperature sensitive components that do not require high joint strength and will not be exposed to harsh or high-stress environments.

Bismuth Alloys

- Bismuth alloys offer a lower melting point than Sn/Pb alloys.
- Bismuth has a similar cost to tin.
- Unfortunately, bismuth in soldering alloys tends to create embrittlement.
- If a bismuth alloy picks up any lead, the melting temperature will drop again (secondary eutectic formed at 96°C, resulting in poor fatigue resistance.
- Bismuth alloys also are prone to failure in peel strength tests due to poor fatigue resistance.

Most of the lead-free alloys

- Many of these are binary alloys that have been used for years in nonelectronic applications.
 - Sn/Ag
 - Sn/Sb
 - Many of these alloys offer advantages over Sn/Pb alloys.
 - Joint strength
 - Thermal fatigue resistance
- However, these benefits vary greatly among the various lead-free alloys.

Tin/Silver Alloys

- Sn96/Ag4 is a fairly common alloy with a long history in the hybrid circuit industry.
- The melting point of this alloy (221°C) is too high for many SMT applications.
- Another disadvantage of this alloy is the cost.

Ternary Tin/Silver/Copper

- This family of lead-free alloys has shown high promise.
 - Sufficient supply
 - -Good wetting characteristics
 - Good fatigue resistance
 - -Good overall joint strength

Searching for a Suitable 🥻 Alloy

- After a review of the acceptable elements and a good deal of experimentation, the following elements were chosen to be the constituents of the lead-free alloy to be studied further:
 - Tin
 - Copper
 - Silver
 - Dopant of Antimony
- The nominal composition of the alloy studied is Sn96.2/Ag2.5/Cu0.8/Sb0.5
 - Melting point of 215°C 217°C.

The Addition of Antimony to Tin/Copper/Silver Alloys

- When Sn/Cu/Ag alloys are doped with Sb, the alloy demonstrates several advantages.
 - Improved thermal fatigue resistance
 - Harder solder joints
 - Finer grain structure
 - Slightly lower melting point
 - Ames Lab and the IDEALS study note that the addition of a dopant, including antimony, to the SnAgCu alloy may be used to enhance the soldering performance of alloys

Concerns About the Toxicity of Antimony

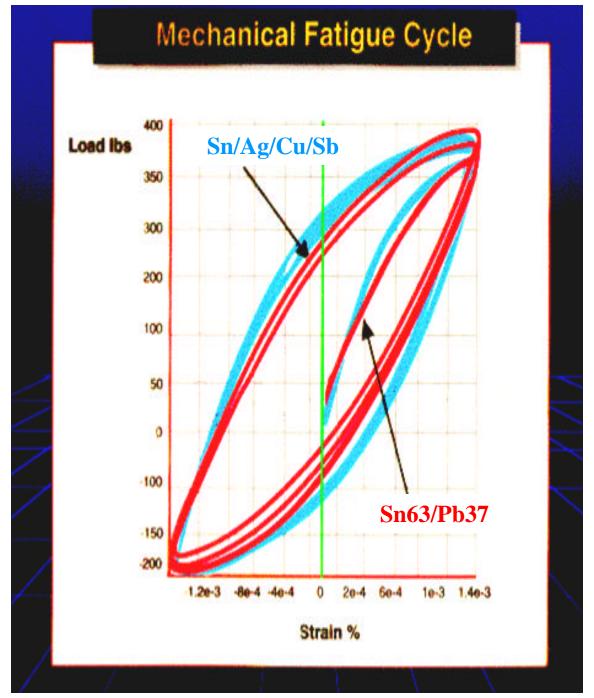
- As with most metals, the salts, oxides, and organo-metallic compounds of antimony typically are the most toxic forms of the element.
- However, these do not form in standard soldering reflow processes.
- In Sn/Pb Solders, IPC-J-STD-006 allows for .5% Sb.
- OSHA's IDLH for antimony is 50 mg/m³, compared to 10 mg/m³ for silver.
- In pewter tableware, commonly used in the preparation of food, antimony often is found at levels of 7 to 9 percent.
- The antimony-doped alloy will not leach silver or copper into ground water.
- The EPA does not recognize antimony as an element that must be tested for in TCLP testing.
 - For additional information about antimony, refer to the U.S. Department of Health & Human Services toxicological profile # TP-91/02 and request "A Study of Antimony" from AIM.

Sn/Ag/Cu/Sb vs. Sn63/Pb37

In order to learn how Sn/Ag/Cu/Sb would perform as a substitute for the traditional tin/lead solder, a comparison of the physical properties of Sn/Ag/Cu/Sb and Sn63/Pb37 was made.

 <u>Tensile*</u> UTS (ksi) 	<u>Sn63S</u> 4.92	<u>Sn/Ag/Cu/Sb</u> 5.73
– Yield Strength (ksi)	4.38	4.86
 Young's Modulus (msi) 	4.87	7.42
– % Elongation**	52.87	50.00

- * tested per ASTM E-8
- **results between 30% 70% generally are considered acceptable.

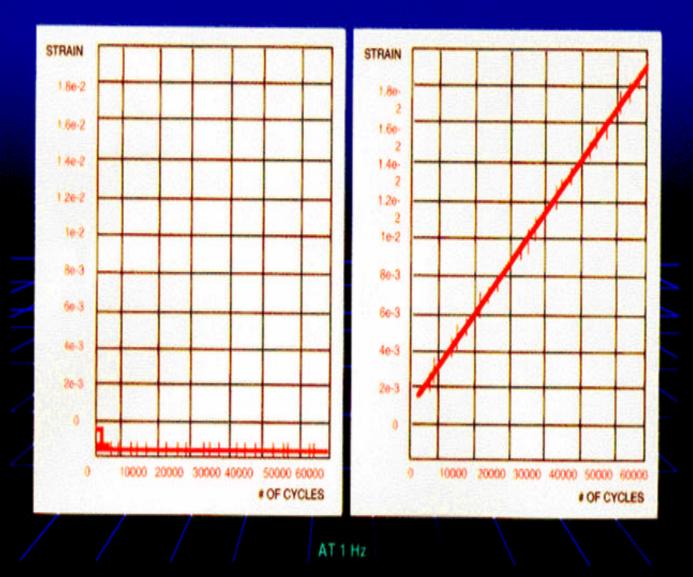


Physical Properties

 <u>Compression</u>* Elastic Modulus (msi) 	<u>Sn63</u> 3.99	<u>Sn/Ag/Cu/Sb</u> 4.26
– YS (ksi)	4.52	4.33
 Stress 25 °/u (ksi) 	7.17	8.54
Hardness**	10.08	13.5

- * tested per ASTM E-9
- ** tested per Rockwell Test, 15W Scale Hardness

When the curves of mild stresses affected on Sn/Ag/Cu/Sb and Sn63/Pb37 are overlaid, they are virtually identical.



Sn/Ag/Cu/Sb has demonstrated the ability to be more adaptable to a wide range of stresses than Sn63/Pb37.

Sn/Ag/Cu/Sb

Sn63/Pb37

Thermal and Electrical Properties*

similar to Sn/Pb, superior to conductive adhesives

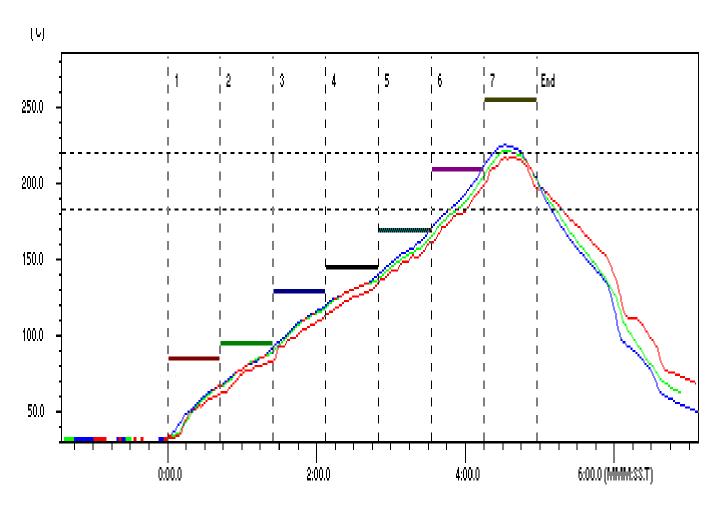
	<u>Sn/Ag/Cu/Sb</u>	<u>Sn63/Pb37</u>
Thermal Diffusivity	35.82+/18mm ²	$^{2}/\mathrm{s}$

- Specific Heat 218.99 J/(kg.K) 150.0J /(kg.K)
- Thermal Conductivity 57.26 W/m.K 50.0 W/m.K
- Electrical Resistivity 1.21 E⁻⁷ohm.m 1.45 E⁻⁷ohm.m
- Electrical Conductivity 8.25M(ohm⁻¹m)
 - *Testing performed by ITRI

Thermal Fatigue Properties of Sn/Ag/Cu/Sb

<u>Cycles/Time</u>	<u>Temperature</u>	<u>Result</u>
200 cycles/400 hrs	-40°C+125°C	Pass
840 cycles	-40°C+85°C	Pass
1000 – 1500 hrs	-40°C+125°C	Pass
Accelerated Fatigue	-50°C+150°C	Pass
Resistance	-40°C+125°C	Pass

Testing performed by independent laboratories.



Soldering with Sn/Ag/Cu/Sb

- Sn/Ag/Cu/Sb requires similar temperatures as Sn63/Pb37 for most soldering applications.
 - Wave Soldering- same pot temperature: 250°C 260°C
 - Hand Soldering- same tip temperature: 600°F 650°F
 - SMT- slightly higher peak temperature: 235°C vs. 220°C (see next slide)

The Sn/Ag/Cu/Sb Reflow Profile is similar to that of Sn63/Pb37, with a higher peak temperature.

Solder Coating PCBs with Sn/Ag/Cu/Sb

The process of solder coating circuit boards with Sn/Ag/Cu/Sb also has shown promise.

- Flatter pads
- Good storage properties

Sn/Ag/Cu/Sb Compatibility

- Compatibility with Tin/Lead alloys is an important criteria of a lead-free alloy.
- Sn/Ag/Cu/Sb has proven to solder well in conjunction with tin/lead coated components and boards, organic coated boards, silver, palladium, and gold-overnickel boards.

Sn/Pb

Ni/Pd

Ni/Pd/Au

 Sn/Ag/Cu/Sb is compatible with the flux chemistries currently used in conjunction with tin/lead alloys

Tin/Silver/Copper 🕅 Reliability When Exposed to Lead

 Tin/Silver/Copper alloys contaminated with lead due see a reduction in mechanical strength.

Fatigue TestTSC+ 0.5% Pb+ 1% Pb# Cycles to Failure13,400 $6,320^*$ $3,252^*$

- According to ASTM E606, 1Hz triangular waveform oscillated between 0.15% strain and -0.15% strain.
- 10,000 cycles constituted a passing mark.
- *Failure, Load Amplitude dropped >20%
- Bismuth bearing alloys see an even greater reduction in mechanical and thermal reliability.

Three families of lead-free alloys have emerged as candidates to become potential standards for the industry:

- Sn/Cu
- Sn/Ag
- Sn/Ag/Cu
 - Sn/Ag2.5/Cu0.7(/Sb0.5) (CASTIN)
 - Sn/Ag4.7/Cu1.7 (Ames Lab)
 - Sn/Ag3.9/0.6 (NEMI)
 - Sn/Ag3.0/Cu0.5 (JEIDA)

Three families of lead-free alloys have emerged as candidates to become potential standards for the industry:

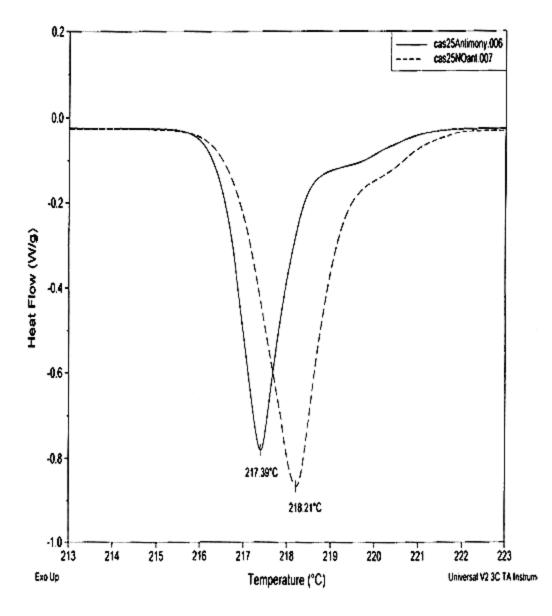
■Sn/Cu

■Sn/Ag

Sn/Ag/Cu -Sn/Ag/Cu(/Sb) (CASTIN) -Sn/Ag4.7/Cu1.7 (Ames Lab) -Sn/Ag3.9/0.6 (NEMI) -Sn/Ag3.0/Cu0.5 (JEIDA)

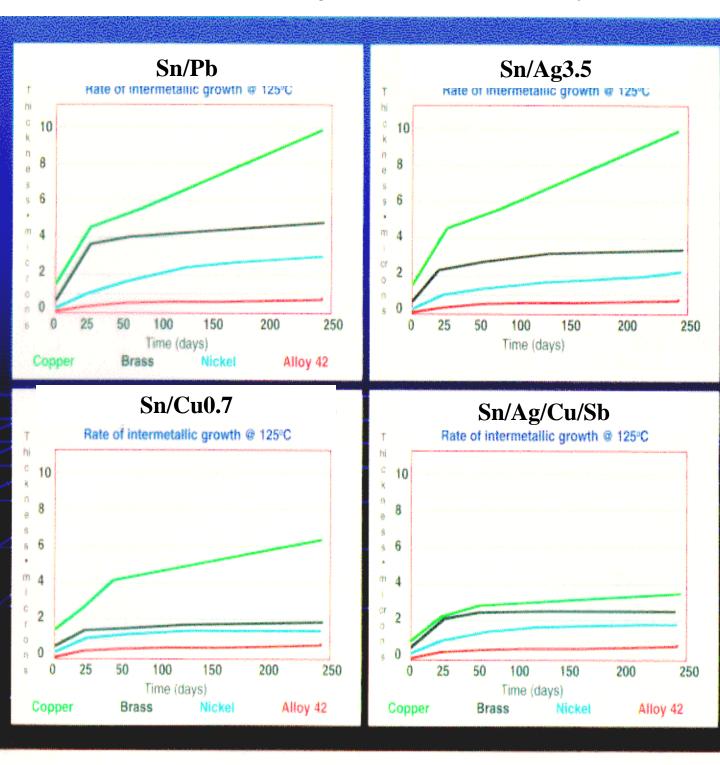
Melting Points

■ Sn/Ag/Cu/Sb 215-217°C


Sn/Ag/Cu 217-218 °C – Exact eutectic formulation not known

■ Sn96.5/Ag3.5 221°C

■ Sn99.3/Cu0.7 227°C


Melting Point Comparison of Tin-Silver-Copper Alloys

 Tin-silver-copper alloys with a dopant of antimony have a slightly lower liquidus temperature than those without

Intermetallic Growth Rates

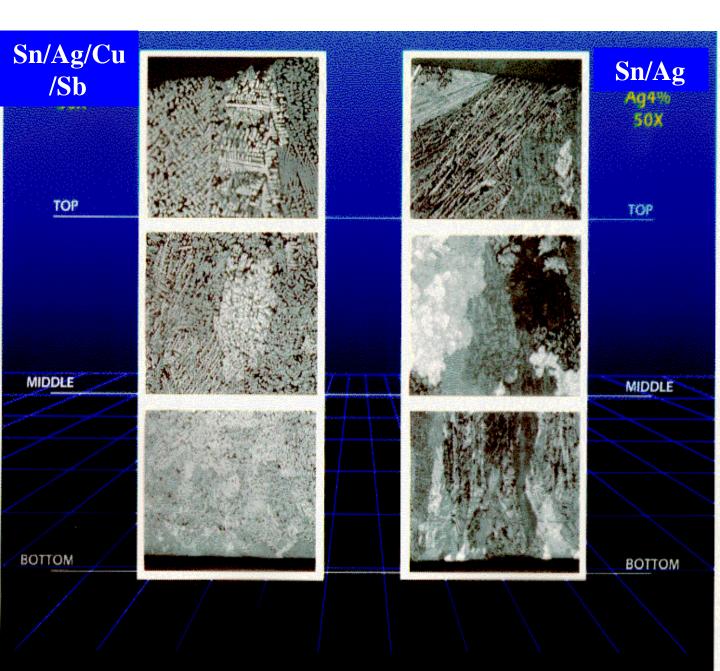
Sn/Ag/Cu/Sb has the lowest copper intermetallic growth rate of the alloys below.

Physical Comparison

 As seen on the chart below, Sn/Ag/Cu/Sb and Sn96.5/Ag3.5 appear very similar physically.

Te	nsile*	Sn/Ag/Cu/Sb	<u>Sn96.5</u>
_	UTS (ksi)	5.56	5.91
_	Yield Strength (ksi)	4.03	4.07
_	Young's Modulus	4.30 msi	5.74 msi
_	% Elongation _ *tested per ASTM E	-8 50.00	43.66
<u>Co</u>	mpression**	Sn/Ag/Cu/Sb	<u>Sn96.5</u>
_	Stress @ 25% strain	10.07	9.88
_	YS .2% strain (ksi)	4.53	4.84
_	Young Modulus ** tested per ASTM 	10.89 E-9	16.60
<u>Ha</u>	rdness***	13.5	12.2
_	*** tested per Rockwell Test, 1	5W Scale Hardness	

Fatigue Testing


 Note that during fatigue testing Sn96.5/Ag3.5 failed one of the set cycles, whereas Sn/Ag/Cu/Sb passed all tests.
 Further investigation leads to the conclusion that this failure was due to a phase change. This is thought to be due to cooling rates.

■ <u>F</u>	Fatigue Test	Sn/Ag/Cu/Sb	<u>Sn96.5</u>
	 # Cycles to Failure 	11,194	10,003
	_	26,921	6,267*
	_	24,527	11,329

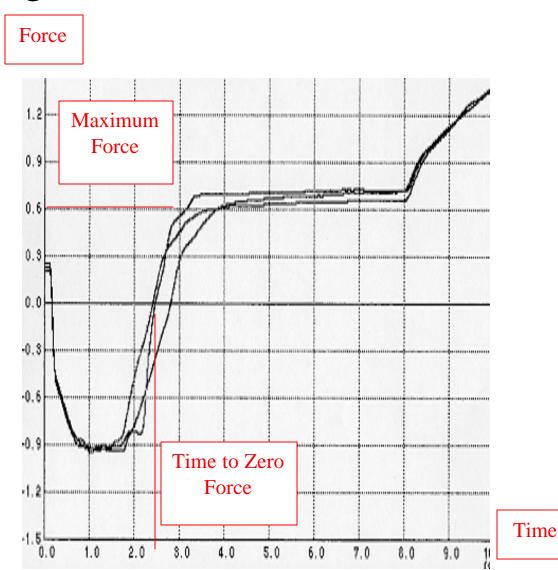
- According to ASTME 606, 1Hz triangular waveform oscillated between .15% strain and -.15% strain.
- 10,000 cycles constituted a passing mark.
- *Failure

Microstructures Testing

One bar each of Sn/Ag/Cu/Sb and Sn96.5/Ag3.5 were melted and subjected to different cooling rates.

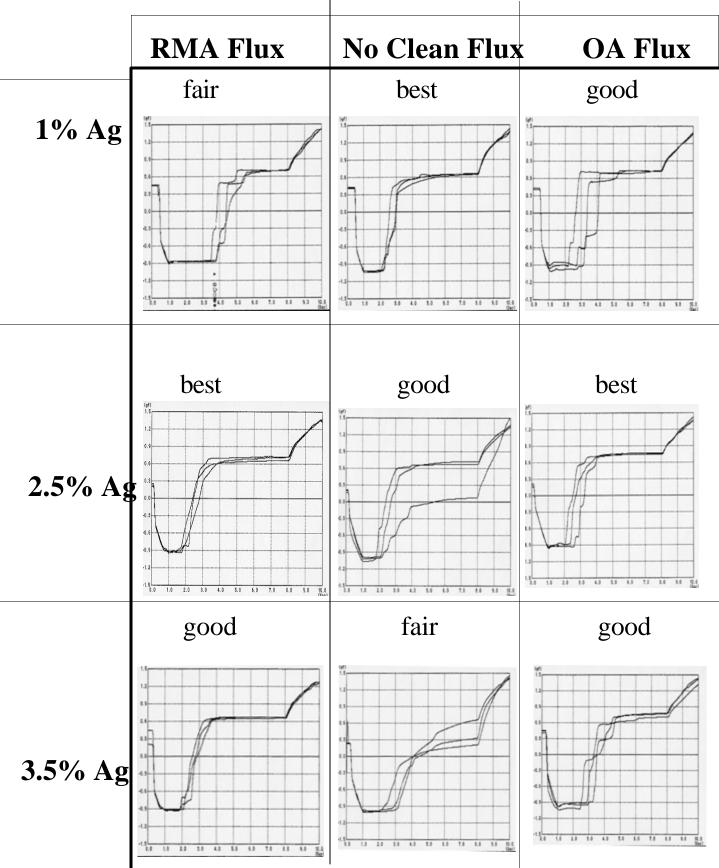
Toxicity Characteristics Leaching Procedure Testing*

Sn/Ag/Cu/Sb, as well as Sn96/Ag4 and Sn97/Cu3, will not leach into the soil at a rate to keep it out of a landfill per Federal TCLP regulations.


In fact, the levels found in the TCLP testing were considered to be less than "ND" (not detected).

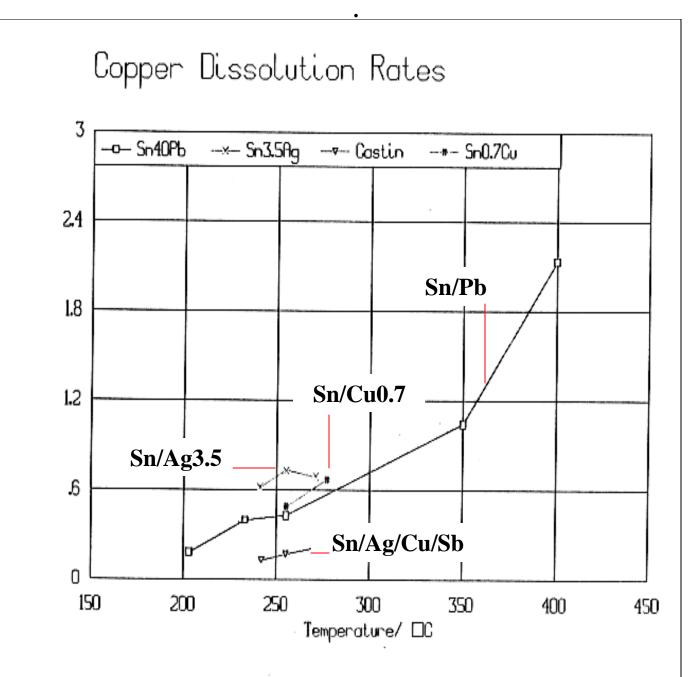
- *Testing performed by ESS Laboratories, Rhode Island

Å

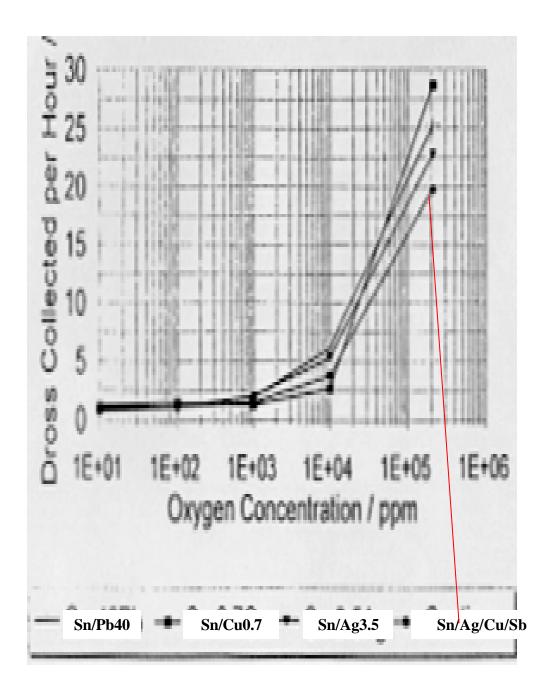

Wetting Testing

As the wetting curves on the following slide demonstrate, alloys that contain 2.5% or less silver wet faster and have better wetting force than alloys with higher silver loads.

Wetting Curves


Testing for Maximum Wetting Time & Force

Copper Dissolution Rates


Copper is dissolved into Sn/Ag/Cu/Sb at a slower rate than Sn/Pb, Sn/Ag, and Sn/Cu, which is a

benefit for wave soldering operations.

Dissolution Rate/ umsec-1

Drossing Rates Sn/Ag/Cu/Sb drosses at a slower rate than Sn/Pb, Sn/Ag, and Sn/Cu.

Per ITRI Testing

Alloy Price

<u>Sn/Ag/Cu/Sb</u> \$4.58/lb

<u>Sn96/Ag4 & Sn/Ag4/Cu</u> \$5.67/lb

<u>Sn62/Pb36/Ag2</u> \$3.31/lb <u>Sn63/Pb37</u> \$1.78/lb

- U.S. Dollars, Based on raw cost of metals

Opportunities for Cost Reductions

- Disposal expenses reduced
- Less dross- especially with Sn/Ag/Cu/Sb
- Higher dross reclaim value
- Volume- More joints per weight with Pb-Frees

Alloy	<u>Density</u>	<u>% Diffe</u>	erence
Sn63/Pb37	8.79 g/cm ³ (.317)	7 lb/in ³)	N/A
Sn/Ag/Cu/Sb	7.39 g/cm ³ (.266	9 lb/in ³)	15.96%
Sn/Ag	7.41 g/cm ³ (.267)	8 lb/in ³)	15.71%
Sn/Cu	7.31 g/cm ³ (.264	1 lb/in ³)	16.86%

For additional information, please see "Can You Imagine? Paying More Brings Cost Savings", by Vincent Corsaro of AT&T

Lead-Free Solder Forms

- Lead-Free Solders are available in:
 - Solder Paste
 - Bar Solder
 - Solid Wire Solder
 - Cored Wire Solder *
 - Solder Preforms*

Many bismuth and indium bearing alloys are not available in cored wire and some preform shapes due to production limitations associated with brittleness and poor thermal fatigue properties.

Sn/Ag/Cu/Sb Availability

- Sn/Ag/Cu/Sb has been recognized within the solder industry as a viable lead-free alternative.
 - Sn/Ag/Cu/Sb has been licensed to and is available from the following companies:
 - Bow Solders
 - Cookson Group
 - Alpha Metals
 - Fry Technologies
 - Witmetaal B.V.
 - Indium Corporation
 - Koki Company
 - Nihon Handa Company
 - Senju Metal Industry

Conclusion

- Eventually lead will be eliminated from soldering.
- When implementing the use of a lead-free solder, certain criteria have to be met.
- Many ongoing and completed studies and industry groups suggest that the Sn/Cu/Ag based alloys offer the most viable replacement to Sn/Pb alloys for the majority of applications.
- In addition, Sn/Cu/Ag alloys that are doped with Sb prove to have several advantages.
- These alloys offer several advantages in terms of melting temperature, physical properties, compatibility with current processes, availability, and price.
- Component tinning, bare board coating, surface mount assembly, wave and hand soldering all are achievable with the proper understanding of lead-free alloys and processes.

THANK YOU

For additional information, please contact the AIM Technical Department, tel: 401-463-5605, fax: 401-463-0203, or find us on the web at www.aimsolder.com