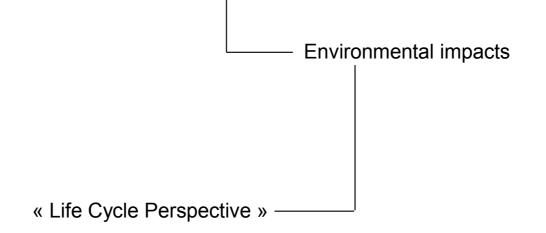


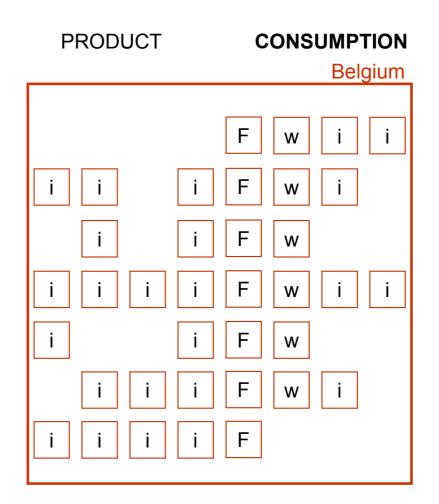
"Identifying Key Products for the Federal Environmental Product Policy"

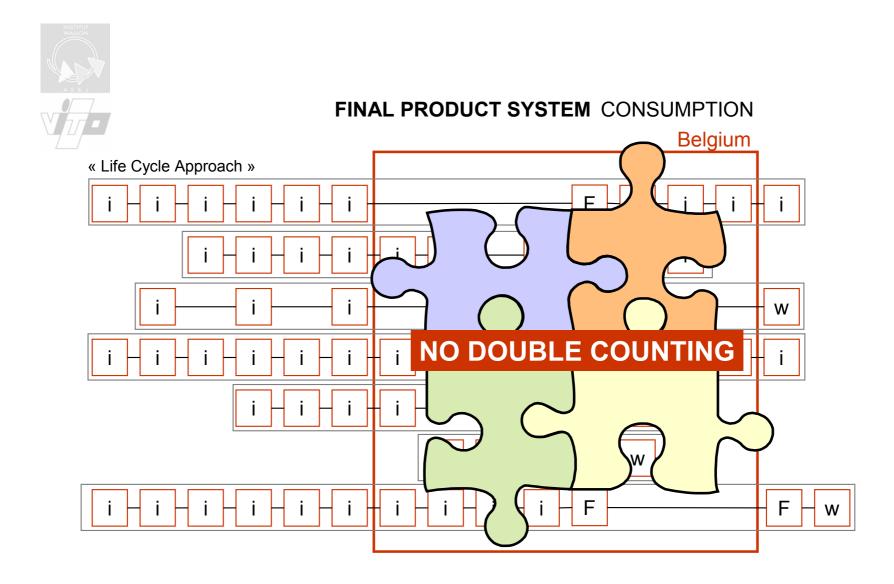
Federal Services of Environment, Department Product Policy

Office for Scientific, Technical and Cultural affairs – OSTC

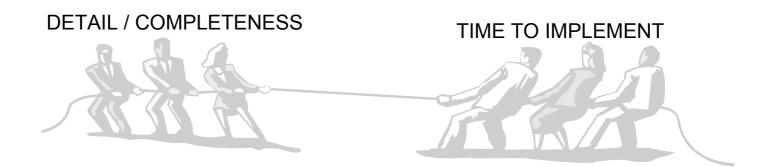

"Integrating climate, resource and waste policies through a product policy"

Report >> www.iwallon.be



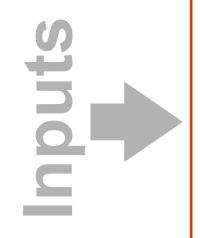

OBJECTIVE

Product Policy « what are priority product groups consumed in Belgium »

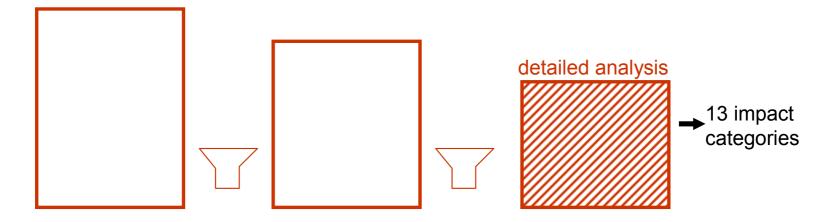


methodology limitations of study

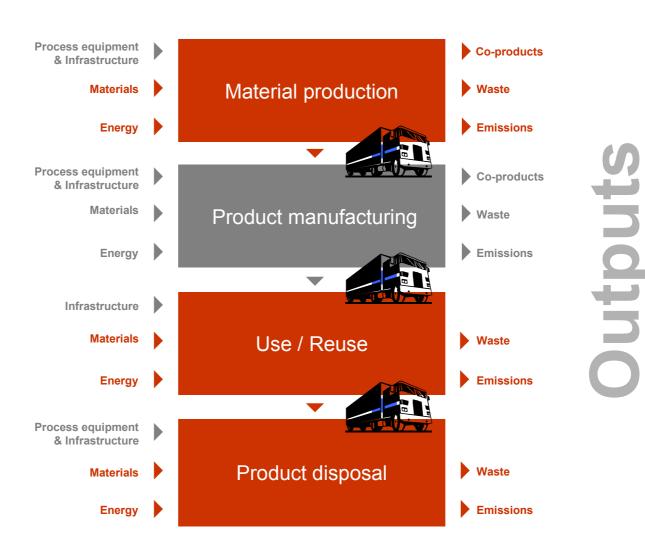
Boundaries determined by:

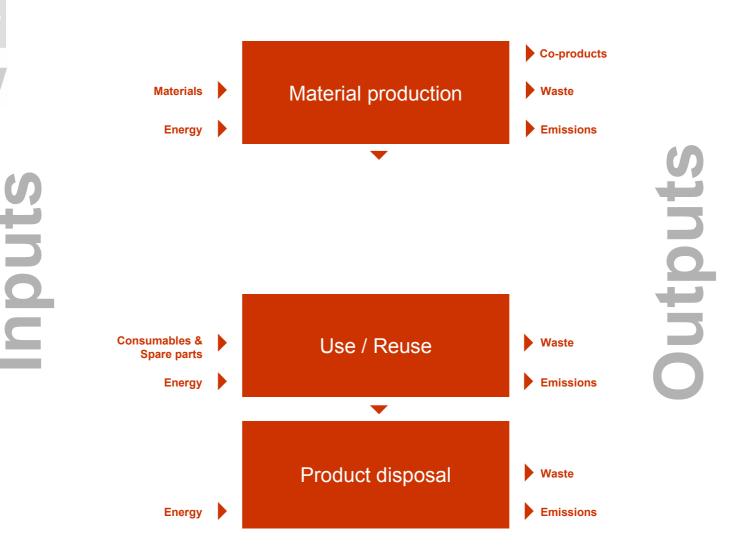

- Time & Resources for study
- Data availability
- Importance in framework of P&E Policy areas

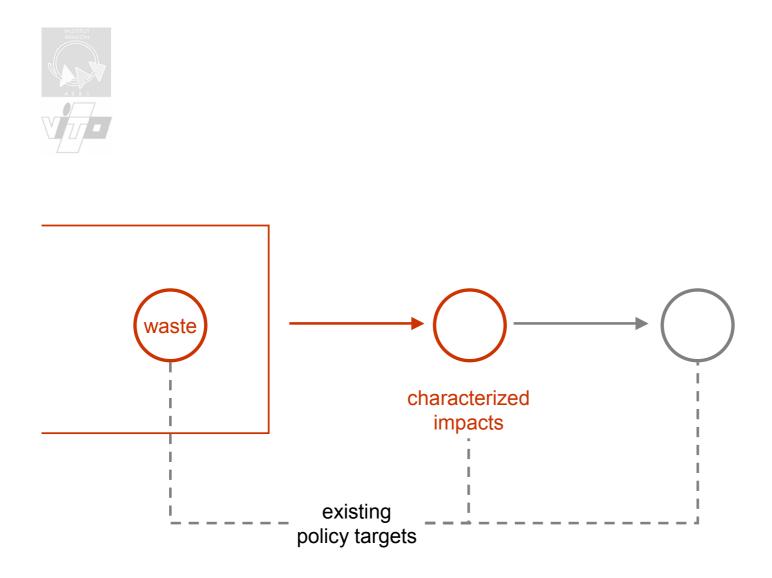
LCApproach


final product category

Final products with identical / similar « function »


Outputs


Not in scope of Belgian PP : food, substances & preparations Based on material & energy intensity



Inputs

		Co-products
Impact ^{aterials}	Substances	Policy level ^{Waste}
Use of raw materials	All	E, F, R Emissions
Use of water	Water –	E, F, R
Use of energy	Fuels	I, E, F, R
Greenhouse gas emissions	CO ₂ , CH ₄ , N ₂ O, SF ₆ , PFCs, HFCs	I, E, F, R
Acidification	SO ₂ , SO ₃ , NOx, NH ₃ ,	I, F, R
Photochemical pollution	VOCs, CO, NOx	I, E, F, R
Heavy metals to air	Pb, Cd, Hg, As, Cr, Ni,	I, E, F, R
Heavy metals to water	Cu, Se, Zn	I, E, F, R
POP's to aires &	Several molecules,	I, F, R 🗦 Waste
POP's to water Energy	Dioxins, furans, PCB, PAH, pesticides	I, F, R
COD in water	Organic subst. 🚽	I, E, F, R
Eutrophication	Phosphates, nitrates	I, E, F, R
Ozone layer depletion	CFCs, HCFCs, CCl ₄	I, E, F, R Waste
(Ultimate) waste		I, E, F, R

Outputs

DATAvailability

ECONOMIC FLOWS

CONSUMPTION

Stats Belgium: • Consumption (NIS-household budget) •Market penetration rates (NIS) •« Apparent consumption » •Production (NIS)

•Foreign trade (NBB)

Stats EU extrapolated to Belgium Specific market & sector reports

 →Compatibility of product lists
→Sector data representative for products « consumed » in Belgium
→Mass/units AND/OR monetary terms

(DIFFERENT approach : Expanded IO, Not available in Belgium)

PRODUCT DATA

MATERIAL COMPOSITION LIFESPAN

« average » consumed unit •Different base materials (%) •Different base technologies (%) •Different sizes... (%) Specific market & sector reports (market reports: available but costly) Waste/takeback studies LCA case studies LCA case studies Own models i.e. dwelling (Institut Wallon) Often « rough » estimates

TOXIC/CHEMICAL CONTENT ??? No data available

E&MLCI – availability, representativess Anno 2000 (depends on material category) Iconsistent waste categories (APME now: EURAL), definition of waste, destination of waste...

ECONOMIC FLOWS

CONSUMPTION

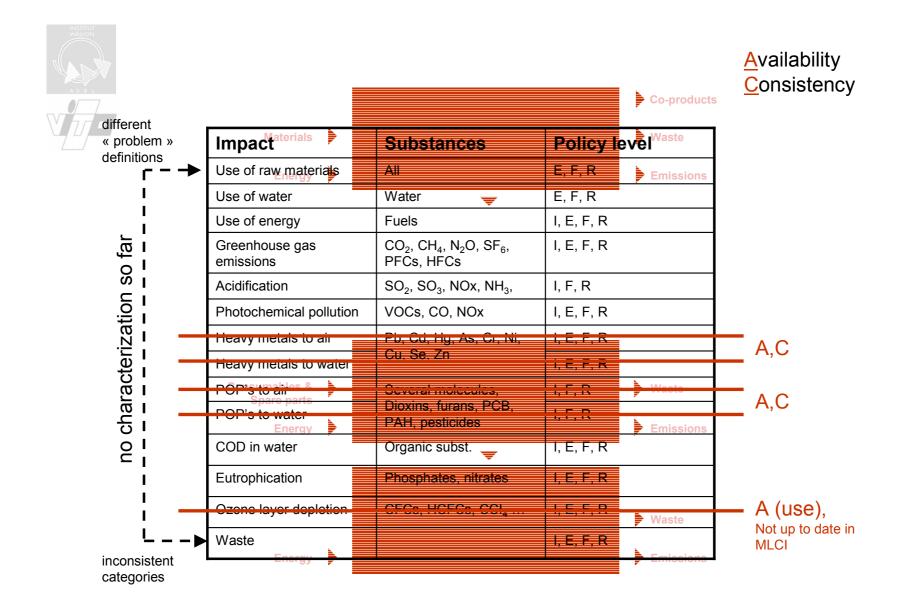
Stats Belgium: • Consumption (NIS-household budget) •Market penetration rates (NIS) •« Apparent consumption » •Production (NIS) •Foreign trade (NBB)

Stats EU extrapolated to Belgium Specific market & sector reports

 →Compatibility of product lists
→Sector data representative for products « consumed » in Belgium
→Mass/units AND/OR monetary terms

(DIFFERENT approach : Expanded IO, Not available in Belgium)

PRODUCT DATA

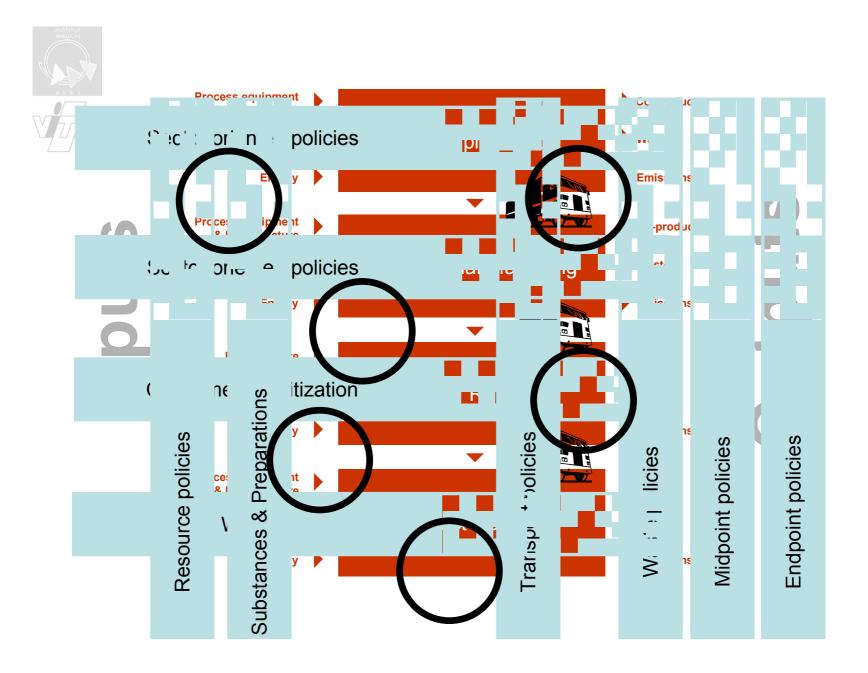

ENERGY CONSUMPTION USE OF CONSUMABLES

Low for « average » units (cars: NIS, own models i.e. TEMAT at Vito) Case studies Mainly own calculations/assumptions

WASTE TREATMENT Destinations: DataA Ok, waste studies, i.e. OVAM, OWD reports

EXPORT (« hidden export », waste treatment in country of destination?)

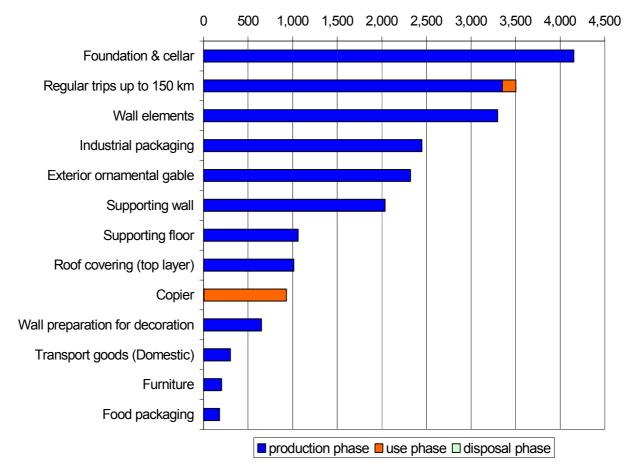
Waste treatment processLCI : Data availability low (compared to MLCI)

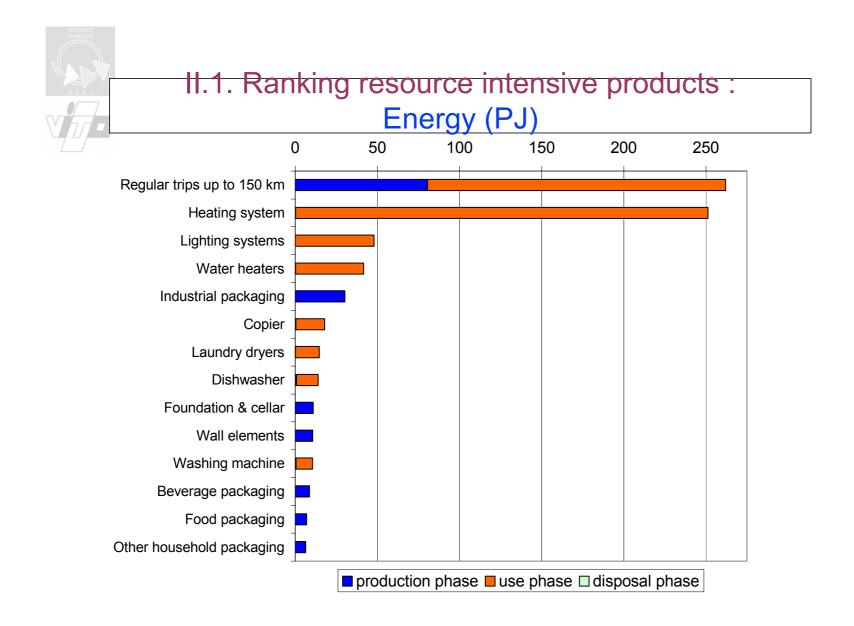

conclusions

- Results as order of magnitude enable to draw conclusions on key product categories. Uncertainties do not enable a real ranking.
- Need for consistent and operational definition of products + consistent product list for this type of studies
- Need for « understanding » and « selection » of consistent set of impact definitions and indicators. Need for INPUT from AND to policy during process.
- IPP Focus on « consumption » means : international context (contribution to national targets).
- « Ambition » of « full » LCA for IPP studies required?

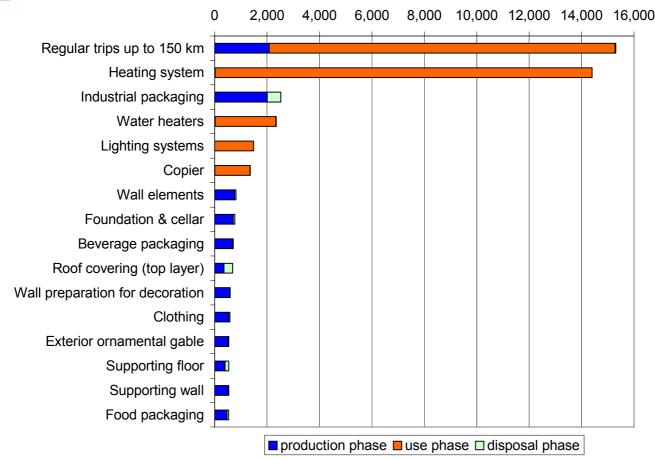
ongoing work

- Detailed study for key product categories:
 - Building materials
 - Cars
 - Packaging
 - EEE
- Scenario's
- Resource use, waste, GHG
- National vs. International contributions

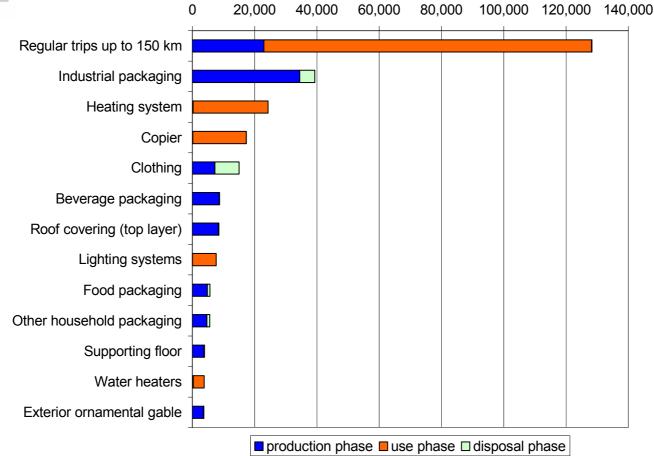


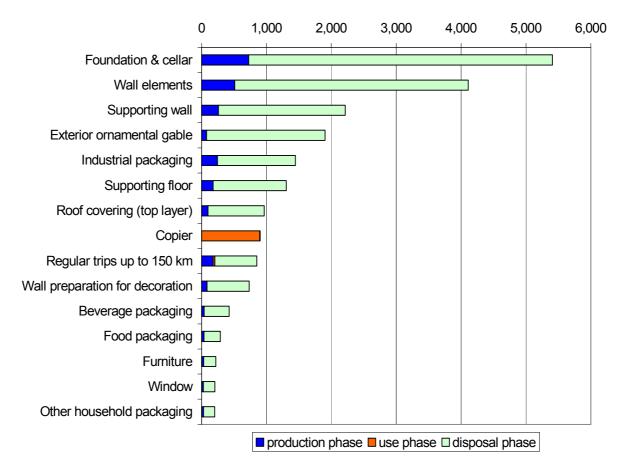

II.1. Ranking resource intensive products : General overview

				emissions to air			emissions to water			
Function class	Energy	Water	Raw materials	acidifying substance s	greenhous e gases	photochemica I substances	POPs	oxygen depletion	eutrophying substances	waste
BUILDING STRUCTURE	6%	0%	64%	10%	11%	4%		5%		79%
BUILDING OCCUPANCY	44%	93%	1%	12%	39%	21%		0%		0%
FURNITURE FOR INTERIOR	0%	0%	1%	1%	1%	1%		0%		1%
ELECTRICAL APPLIANCES	5%	7%	0%	2%	3%	1%		0%		0%
HEALTHCARE AND DETERGENTS	1%	0%	1%	1%	0%	0%		7%		1%
TRANSPORT	34%	0%	16%	43%	33%	60%		1%		4%
INFORMATION TECHNOLOGIES AND	2%	0%	4%	6%	3%	2%		51%		4%
PACKAGING	7%	0%	13%	20%	9%	8%		36%		11%
TEXTILE	1%	0%	0%	5%	1%	3%		0%		0%

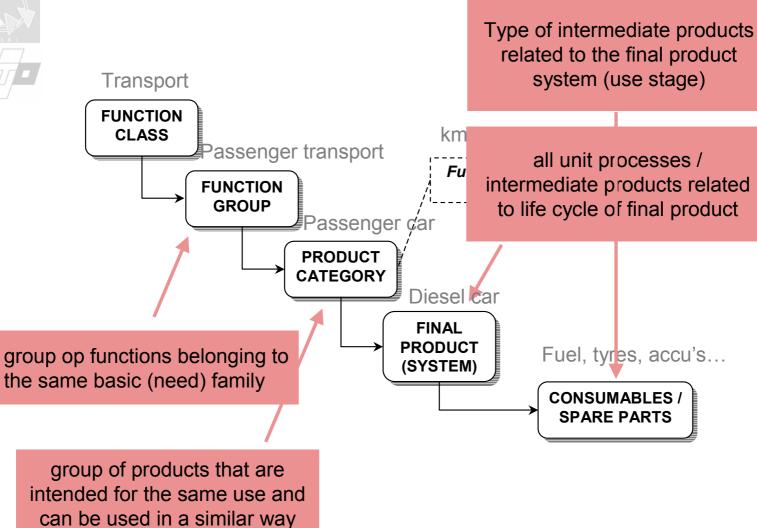

	>	30%
15%	-	30%
5%	-	15%

II.1. Ranking resource intensive products : Raw materials (ktonnes)




II.1. Ranking resource intensive products : Greenhouse gases (ktonnes)

II.1. Ranking resource intensive products : Acidifying substances (tonnes)


II.1. Ranking resource intensive products : Waste (ktonnes)

II.1. Ranking resource intensive products : Less reliable quantified environmental fluxes

	uncertainty on emission factors	other sources of uncertainties	other relevant sources
emissions to air			
heavy metals	x	-	-
POPs	x	only few substances accounted (HAP, dioxins)	regional inventories => heating & transport
ODS and F-gases	not reflecting recent developments	assembly phase not accounted	-
emissions to water			
eutrophying substances	x	-	regional inventories => paper and packaging
heavy metals	х	-	-

Overview

V

Function CLASS	Remarks	
Building structure	- Considered final products - Related to construction of building	
Building occupancy	- Considered final products - Related to living (houses) or working (office buildings, production plants)	
Furniture		
Electrical Appliances	EEE related to food preparation and storage, laundry, bathroom, DIY tools	
Information & Communication	ICT equipment and traditional information carriers (paper books, newspapers etc)	EEE
Leisures	Includes audio- and video equipment, computer games, photography etc	
Healthcare & Detergents		
Transport	Only passenger cars considered (no public transport or transport of goods)	
Garden	Garden furniture, garden tools	
Packaging	- Considered final products -	1
Textile & Footwear	Besides clothes and footwear also housetextiles, bags/sacks etc	

Used Data

Product consumption data [n° functional units]:

- All products (except mentioned below): NSI statistics (household budget) / CRIOC study: based on penetration rates, extrapolated EU-wide statistics to Belgium
- Packaging: extrapolations based on data reported by recognised bodies (VAL-I-PAC and FOST PLUS)
- Passenger cars: NSI & TEMAT model (Vito)
- Building materials : models from previous OSTC study (Institut Wallon)

• Product material composition [%] and product weight [kg]:

- All products (except mentioned below) : pure estimates or extrapolations based on scattered published data (LCA product case studies, BAT studies, waste studies, other...)
- Transport: study Belauto (1997), Vito study on shredder waste (2001)
- Building : model (Institut Wallon)
- Packaging : based on data reported by recognised bodies (VAL-I-PAC and FOST PLUS)

Product Lifespan [yrs]

- Pure estimates for most products
- Electronic appliances : Miplan-study for OVAM (1999)
- Transport : calculated values based on yearly consumption

Resource requirements [kg], emission- and waste factors [kg]

- Material production/material recycling: LCA databases (BUWAL, APME, ETH, IDEMAT 2001, IVAM LCA DATA 4.0, ...), existing data on GER, waste factors (several studies)
- Use phase
 - Energy/fuel-use: mostly internet sources
 - Consumables: mostly estimates or allocations of consumable-consumption data to specific final product groups
- Treatment of wasted (after use) materials: LCA databases (BUWAL...)

Waste treatment scenario's for disposed products

- Electronic appliances : Miplan-study for OVAM (1999), Recupel year report 2001
- Passenger cars : study Belauto (1997), Vito study on shredder waste (2001)
- Building materials : Plan Wallon des déchets(DGRNE) and data OVAM
- Packaging : based on data reported by recognised bodies (VAL-I-PAC and FOST PLUS)
- Mixed municipal waste : data OVAM for Flanders, data DGRNE for Walloon region

LCApproach

- LCApproach
 - LCI data
 - Principles of LCA (allocation, FU, credit...)
 - Principles of sector studies / economic studies (IO)
- Ranking product groups:
 - NOT Comparative LCA : Compare competitive product systems based on the same functional unit
 - Rank non-competitive product groups (functional categorization) consumed in Belgium (x C)
- Growing demand: IPP, Belgian Product Policy, Flemish resource policy...
- Existing studies
 - 2003, « Study on external environmental effects related to the life cycle of products and services » – BIOIS, O2 France (comm. By EC, DG ENV)
 - 1995, Danish EPA « ranking of industrial products », Hansen E.
 - 2003, « Prioritisation within the integrated product policy », LCA Consultants, Copenhagen
 - Eco-Top Ten Initiative Öko-Institut e.V.
 - ...