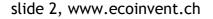


International Workshop on Quality of LCI data 2003 October 20-21, 2003 Karlsruhe, Germany

Comparison of different approaches how to deal with cumulative LCI data in a unit process database

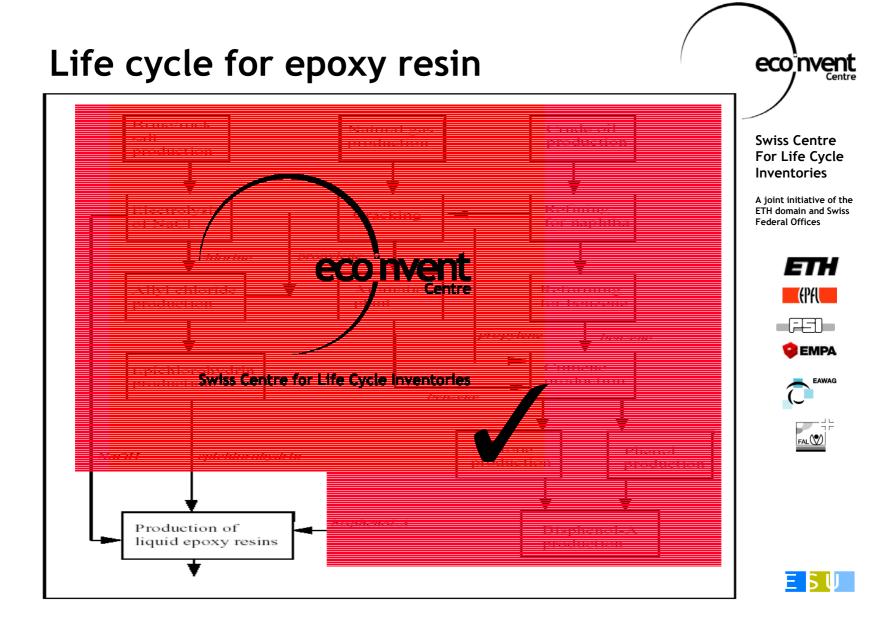

Niels Jungbluth, Rolf Frischknecht, Roland Hischier

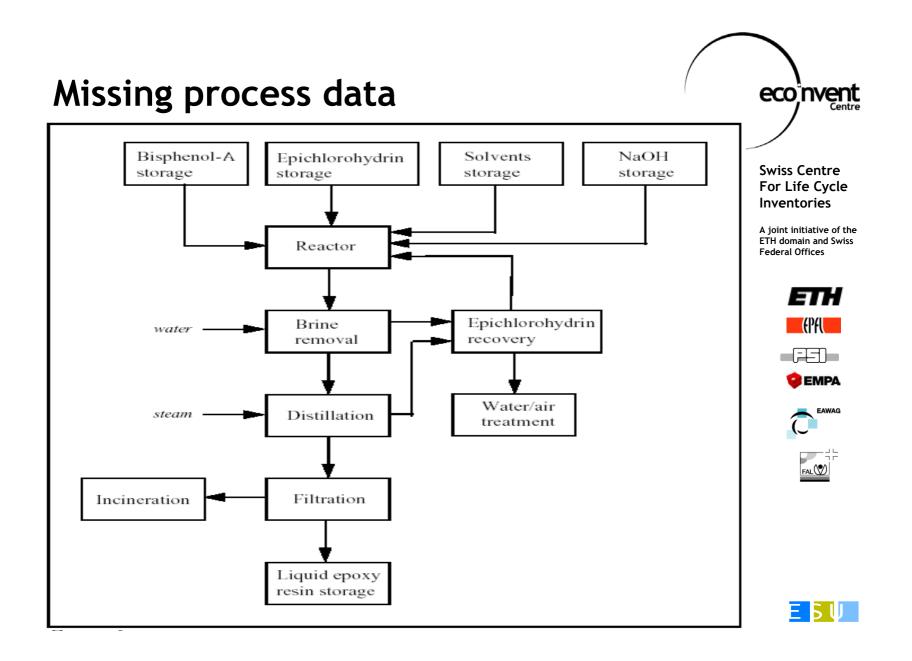
ESU-services, Uster, <u>www.esu-services.ch</u> /EMPA Dübendorf jungbluth@esu-services.ch

Swiss Centre For Life Cycle Inventories

Challenges

- Quality guidelines for ecoinvent require
 - data on a unit process basis
 - full range of elementary flows
 - full linkage to background data
 - standardized assumptions for infrastructure, transports, waste models, allocation, etc.
- Problems with inventory data published in a cumulative format
 - Important modelling questions cannot be harmonized
 - No possibility to use standard background data, e.g. for transports, electricity use
 - No update for new developments (e.g. emission control for lorries)


Swiss Centre For Life Cycle Inventories


A joint initiative of the ETH domain and Swiss Federal Offices

slide 3, www.ecoinvent.ch

Example APME data

Gross air emissions in mg arising from the production of 1kg liquid epoxy resin

Swiss Centre
For Life Cycle
Inventories

eco, nvent

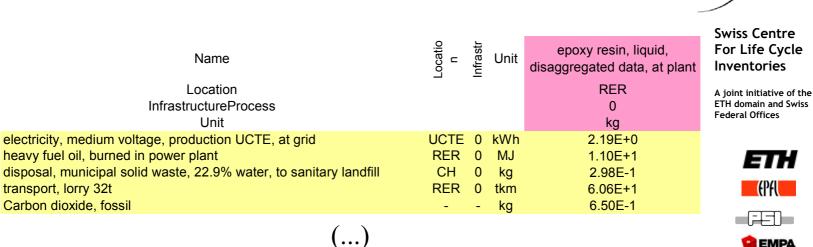
Emission (mg)	Fuel production	Fuel use	Transport	Process operation
Dust	5'500	2'800	21	7'100
CO2	1'600'000	3'600'000	34'000	650'000
N2O	<1	<1	-	-

First approach (aggregated data)

Name	Locati on	Infrast	Unit	epoxy resin, liquid, at plant
Location				RER
InfrastructureProcess				0
Unit				kg
disposal, hard coal mining waste tailings, in surface backfill	GLO	0	kg	3.00E-1
Oil, crude, in ground	-	-	kg	6.70E-1
Carbon dioxide, fossil	-	-	kg	5.90E+0
Dinitrogen monoxide	-	-	kg	5.00E-7

(...)

- All data are directly taken from the publication
- Data <1 estimated with 0.5
- Only waste disposal linked to background processes
- No uncertainty ranges



Swiss Centre For Life Cycle Inventories

Second approach (disaggregated data)

- Linkage of data to background processes (e.g. fuel oil use) •
- Disposal of process specific wastes linked to background processes •
- Process specific emissions from publication, other emissions from • database
- Own assumptions for infrastructure and transports •
- No uncertainty ranges •

🔒 EMPA

AL (V)

EAWAG

econvent

Third approach (stoichiometric calculation)

		sodium hydroxide,	
bisphenol A,	epichlorhydrin, at	50% in H2O,	
powder, at plant	plant	production mix, at	
		plant	
RER	RER	RER	
kg	kg	kg	
0.83	0.33	0.14	

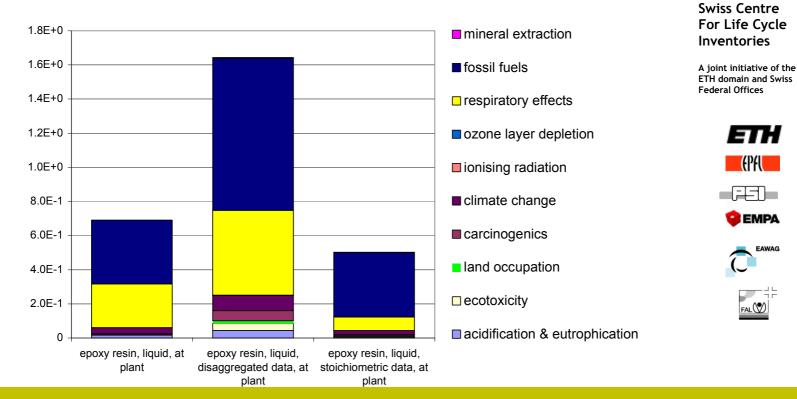
- Use of 3 pre-products in the stoichiometric ratio
- No process specific data for: yield, emissions, energy uses, infrastructure, process wastes, etc.
- Uncertainty can be assessed

Swiss Centre For Life Cycle Inventories

	Unit	aggregated kg	disaggregated kg	stoichiometric kg	Swiss Centre
cumulative energy demand	MJ-Eq	125.0	290.0	125.9	For Life Cycl
Land occupation	m2a	0.003	0.168	0.053	Inventories
Carbon dioxide, fossil	kg	5.92	15.63	4.26	A joint initiative of
Nitrogen oxides	kg	0.035	0.093	0.013	ETH domain and Sv Federal Offices

Inventory Results (excerpt)

- Fossil energy use and CO2 much higher for disaggregated data ٠
- Lower distances for transports seem to be used by APME \geq
- Land use is much lower for aggregated data •
- Only from waste disposal, but no direct data available \geq
- NOx emissions higher for disaggregated data •
- Emissions from transport and differing assumptions for combustion? \geq
- For stoichiometric calculated emissions are sometimes higher, energy \geq is similar


ive of the and Swiss ۵c

Impact Assessment (EI'99 H,A)

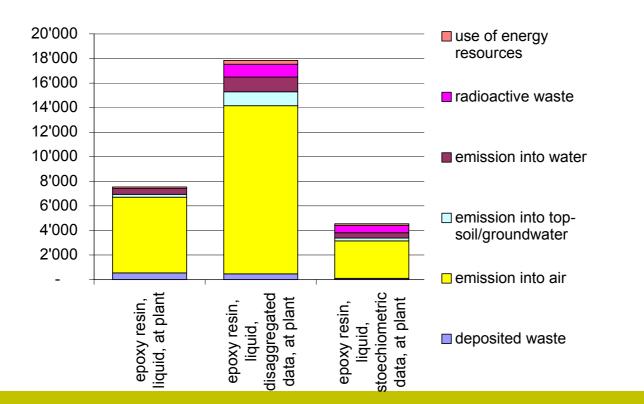
Main difference: Energy use, respiratory effects (NOx)

slide 11, www.ecoinvent.ch

Presentation: Niels Jungbluth

eco, nvent

ETH


(PAL

😉 EMPA

FAL

EAWAG

Impact Assessment (ecological scarcity 97)

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

FAL

Main difference: NOx emissions, radioactive waste

slide 12, www.ecoinvent.ch

Summary

- No good solution for the integration of cumulative data
- Cumulative data might neglect important aspects
- Disaggregated data get a poor quality rating because important aspects like type of combustion, transport device, etc. are not known, assumptions might be wrong
- Stoichiometric data might miss important direct process impacts

Swiss Centre For Life Cycle Inventories

ETH
(PAL
FED
💡 EMPA
EAWAG

- ecoinvent uses the original cumulated data (first approach)
- It is recommended to use these as background data but not for comparison with materials investigated in detail

Outlook

- Industrial data and averages are an important and necessary part of LCI databases
- Industrial data should be published as far as possible on a unit process base
- Keep confidentiality only were absolute necessary
- Horizontal industry averages for unit processes are no problem
- Vertical accumulation decreases data quality and comparability
- Good examples for industrial databases are e.g. study by European Aluminium Association

Swiss Centre For Life Cycle Inventories

