

LCA of Aboveground Bioremediation of Diesel-Impacted Soil

L. Toffoletto, R. Samson and L. Deschênes Thursday, September, 25th InLCA/LCM 2003 Seattle

LCA of Aboveground Bioremediation of Diesel-Impacted Soil

- 1. LCA and contaminated soil management
- 2. Case study
- Goal and scope
- 4. Life cycle inventory (LCI)
- Life cycle impact assessment (LCIA)
- 6. Interpretation
- 7. Conclusions

1- LCA and contaminated soil management

In Quebec, three levels of criterial values for site use (A : residential,
 B : commercial and C : industrial) have been set out for contaminated soil.
 These generic criteria do not consider the impacts of decontamination,
 however:

While decontamination technologies reduce the concentration of pollutants, they can generate other impacts

- LCA can be a useful tool to assess these two kinds of impacts as well as evaluating if remediation is the best environmental option
- 4 previous studies have already applied LCA to soil management:
 - Volkwein et al., 1999
 - Page et al., 1999
 - Diamond, et al., 1998
 - Beinat et al., 1997

1- LCA and contaminated soil management

Primary impact vs secondary impact (Volkwein et al., 1999)

2 – Case study A diesel contamination in Quebec

- The case study considered is a diesel-contaminated site located in Quebec (Canada).
- A volume of 8000 m³ was impacted with diesel
- Level of contamination : 6145 mg/kg (2 times the B criterion for industrial use)
- The remediation project took place in the late 90's and consisted in excavating the soil and treating it using an ex-situ biopile treatment located near the contaminated area (single-use treatment center)
- The target was 700 mg/kg (B criterion for commercial use)

2 – Case study

A diesel contamination in Quebec

5 biopiles were constructed near the contaminated area:

3 - Goal and Scope

Objectives

To assess the primary and secondary impacts of the biopile treatment's life-cycle as a function of the duration of treatment and the achievement of regulatory criteria

Functionnal unit and reference flow

The remediation, during a two-year period, of 8000 m³ of diesel contaminated-soil (6145 mg C_{10} - C_{50} / kg) to the B generic criterion (700 mg C_{10} - C_{50} / kg) using a biopile treatment

Scope

- All activities occurring during the remediation were included;
- The electric energy consumption considered pertained to the pumps;
- All transportation to and from the site were included;
- Ex-situ monitoring activities were not taken into account;
- Landfilling of soils was excluded from the system boundary.

4 - LCI Life cycle flow diagram

4 - LCI Some inventory data ...

Inputs	Mass (kg)	%	Life cycle stage	
Steel	25,644	1.30		
Aluminum	151	0.01		
Clay	880,866	44.57		
Asphalt	786,000	39.77		
Wood	4904	0.25	(1) Site preparation	
HDPE	1305	0.74		
LDPE	7375	0.09		
Zinc	4	0.00		
Wood chips	189,600	9.59		
Diammonium phosphate	1644	0.08	(4) Soil heaping	
Urea	7525	0.38		
Water	40,486	2.05	(8) Monitoring	
Latex	5	0.00		
Glass	552	0.03		
Manure	6402	0.32		
Gravel	4272	0.22	(9) Volatile emission treatment	
PVC	11,473	0.58		
Peat	15	0.00		
Total	1,976070	100		

5 - LCIA

Diesel characterization factors

- Characterization factors for each emitted susbstance come from SimaPro databases (EDIP97).
- Characterization factors for diesel were calculated for the three main fractions (Gustafson et al., 1997) according to the EDIP methodology (Hauschild et al., 1998).

	% of diesel mass	EF _{soil}	EF water	HTF _{soil}	HTFwater	HTFair	
	AROMATIC						
C ₆ - C ₁₀	14	5.63E-01	1.39E00	3.05E-05	2.4E-02	2.52E00	
C ₁₁ - C ₁₆	25	5.80E-02	1.39E00	1.57E-06	2.67E00	5.02E00	
C ₁₇ - C ₂₁	0.03	4.63E-03	0.00E00	1.03E-07	1.59E01	NA	
	ALIPHATIC						
C ₆ - C ₁₀	1.3	1.85E-02	5.56E-01	3.05E-5	2.67E-03	5.02E-02	
C ₁₁ - C ₁₆	14	7.35E-05	5.56E-01	2.72E-07	1.35E01	1.12E00	
C ₁₇ - C ₂₁	46	1.47E-07	5.56E-01	1.42E-04	NA	NA	

EF: Ecotoxicity Factor

HTF: Human Toxicity Factor

6- Local impact is superior to global impact

6 - Decontamination generates less impact than the initial contamination

- •Treatment efficiency (criteria level reached) does not influence the level of secondary impact;
- As lower levels of contamination are reached during decontamination (A and B generic data), the less significant the bioremediation's total impacts becomes.

6 - Decontamination generates less impact than the initial contamination

This LCA showed that the remediation that occurred in the late 90's has probably generated less impact than the contamination. In a sustainable development perspective, this decontamination was necessary.

Total impact of bioremediation

Impact of the initial contamination

For initial contamination > 350 ppm

6- Site preparation and site closure are the main life cycle stages that generate environmental impact

6- Replacement of asphalt with cement

Asphalt is a material input which generates a high impact (during its production and its end-of-life burial in a landfill).

Concrete paving does not represent a better environmental alternative to asphalt since its impact is higher than asphalt paving (Blomberg, 2000; Horvath et al...

1998).

6- Single-use treatment center or permanent facilities?

Single-use treatment center

- Site preparation and closure
- Soils remain on site

Comparative LCA

Permanent facilities

- Allocation of the impact of site preparation and site closure to the total quantity of soil treated during the center's operation time
- Transport of soils from the contaminated site to the permanent treatment center

6- Global impact increases if the permanent center is far away from the site

For a permanent treatment center treating 20,000 m³ of soil / year during 10 years global impacts become superior to the ones of a single-use treatment when the distance to the contaminated site becomes greater than 200 km.

The environmental advantage of a permanent treatment center depends on its distance from the contaminated site.

7 - Conclusions for decision makers

- □ To reduce the overall environmental impact, contaminated soil should be treated to achieve the lowest level of residual contaminants;
- Decontamination can generate more impact than the contamination itself when the initial contamination is below a certain limit value (350 ppm for this case study);
- □ Depending on the volume of contaminated soils treated each year, the duration of permanent installations and the contaminated sites' geographical location, permanent installations can be a very interesting alternative to reduce the environmental burden.

7 - Conclusions LCA and contaminated soil management

The use of LCA proved to be useful for the assessment of site remediation but has also revealed several challenges:

	mation of the primary impact values obtained from the EDIP
method:	o many physical and chemical properties of the soil and the diesel were not taken into account during the characterisation factor calculations;
	o no sorption phenomena were integrated ;
	o the model assumes a one-shot release of the contaminant;
	o all diesel is considered available to produce ecotoxicologic and toxicologic effects;
	o no site-specific considerations.

Low data quality: The databases used were predominantly European; A significant proportion of the data taken from the databases is not well documented

LCA of Aboveground Bioremediation of Diesel-Impacted Soil

L. Toffoletto, R. Samson and L. Deschênes Thursday, September, 25th InLCA/LCM 2003 Seattle

