Tool for Environmental Analysis and Management (TEAM™) Demonstration

Annie Landfield First Environment, Inc. Seattle, WA September 22, 2003

ISO 14001 CERTIFIED

Agenda

- 1) Intro to LCA and TEAM (15 Minutes):
 - Objectives of the demonstration
 - Brief introduction of LCA (as necessary)
 - TEAM[™] organization: Explorer and System Editor
 - TEAM[™] components: flows, modules, and systems
- 2) Building a System in TEAM (15 Minutes):
 - Case study: LCA of a car
- 3) Results and Interpretation (15 Minutes)

Objectives of the Demonstration

- To demonstrate how to perform LCIs, LCIAs, and Interpretation using an LCA software
- To make performing an LCA a reality (!), and to show how simple it can be when performed in an organized manner and software
- LCA disclaimer
- Please ask or jot down any questions
 - I will be around after this presentation and all week to answer any questions or discuss anything further

Life Cycle Assessment According to ISO (14040-14043)

ISO 14001 CERTIFIED

LCA - Basic Definitions

- Life Cycle Assessment is the generic term used for process of evaluating the potential environmental impacts of a product throughout its life cycle. Four major steps:
 - Goal and Scope Definition
 - Life Cycle Inventory: compilation of all the inputs and outputs directly coming from and returning to the earth over the life cycle of a product (elementary flows)
 - Impact Assessment: using the inventory results to assess the impact on ozone depletion, greenhouse effect, eutrophication, ecotoxicity, etc.
 - Interpretation

Goal and Scope of the Car LCA (1/2)

- For the car case we will have already determined the reasons for carrying out the study and how the system will be modeled
 - 1. The reasons for carrying out the study
 - Understand environmental impacts associated with the life of a current car
 - Use that baseline to see what kinds of improvements can be made along the supply chain (i.e., at production, end of life, etc.)
 - Create a comparison of the current car and a more innovative car

Goal and Scope of the Car LCA (2/2)

(con't)

2. The way the system will be modeled

- The function of the study will be the use of a car, and the functional unit will be one car used over a 10 year lifetime
- Secondary (i.e., publicly-available) data will be used, and will be European data in the range of the 1990's through the present
- The system boundaries have been defined in the next slides

System Boundaries: Principle

ISO 14001 CERTIFIED

System Boundaries: Car LCA

ISO 14001 CERTIFIED

TEAM™ LCA Software

- TEAM[™] organization: Explorer and System Editor
- TEAM[™] components
 - Inputs & outputs: FLOWS
 - Data sets: MODULES
 - SYSTEMS
- Case study in TEAM[™]: LCA of a car
 - Building a system in TEAM[™]
 - Calculating an LCI in TEAM[™]
 - Editing and analyzing the LCI
 - Performing impact assessments with TEAM[™]
 - Performing scenario-based simulations with TEAM[™]

TEAM[™] Explorer

 Explorer is the Workspace in which LCI, LCIA, and other interpretation is performed

*****	TEAM - [Explorer - Fridge.tfw]							
***>	<u>F</u> ile	System	Ass <u>e</u> ssment	\underline{S} imulation	Ad <u>v</u> anced	$\underline{W} \text{indows}$	Help _ B ×	
	Work	Space SYSTEMS DEAM NALYSIS Assess NTERPRI	DESCRIPTIO Modules Data sment Methods ETATION	IN ibase				
Cu	Current Systems DB: C:\Ecoba2\projects\Fridge.tdb							

TEAM[™] System Editor

 The system editor is where the life cycle model is built

TEAM[™] System Editor

- This window presents the elements contained in the database:
 - Flows List window, which groups all the flows used throughout the modules
 - a Modules List window, which groups all the data sheets sources used throughout the systems
 - a System Tree View window, which groups all the systems and sub-systems
 - a System View window, which shows a graphical display of the Systems

Flows

- Flows represent the elements that are to be included in the inventory of a system, and make up the data sets (as inputs or outputs)
- Flow definition includes a name, a unit, information fields and some physical properties. This ensures that flow names are not repeated in different data sets

💙 (a) Carbon Dioxide (CO2, fossi			
រិជិ Flow Definition	Accept		
Name: (a) Carbon Dioxide (CO2, fossil)	< <u>INFO></u>		
Units: g 🔽 🔽 Visible	New		
	Close		
Creator: ecobilan Protector: ecobilan			
T 💦 🔊 🔝 📉	ISO 14001 CERTIFI		
INMENT 🛛 🔣 🐸 🔜			

Modules

- A Module usually describes:
 - a process, e.g. Ammonia Production
 - or a step, e.g. Road Transport
- A Module is made up of Flows (inputs and outputs)

DEAM[™] Database (1/3)

 DEAM[™], Database for Environmental Analysis and Management, is made up of hundreds of modules, and is available with the TEAM[™] software package

Modules
211 Cardboard: Production
241 Ammonia: Production
241 Detergent: Production
241 High Density Polyethylene (HDPE): Production
241 Polyethylene (PE, All Grades): Production
241 Polypropylene (PP): Production
241 Polystyrene (PS, All Grades): Production
241 Polystyrene (PS, High Impact): Production
271 Steel: Production
274 Aluminium: Production
274 Copper: Production
401 Electricity (France, 1992): Production
401 Electricity (Germany, 1992): Production
401 Electricity (Japan, 1993): Production
401 Electricity (United Kingdom, 1992): Production
602 Road Transport 1 (Diesel Oil, I)
602 Road Transport 2 (Diesel Oil, I)
Physical Chemical Treatment (Grease)
Two Steps Treatment (Detergent)
Two Steps Treatment (Grease)
Cooled Water: Production
Electric and Cooling Circuit: Production
Insulation: Production
Metal Body: Degreasing
Metal Body: Production (Steel, Aluminium)
Plastic Body: Production (PP)
Refrigerator: Assembling
Refrigerator: End of Life
Refrigerator: Use

DEAM[™] Database (2/3)

- DEAM[™] modules consist of:
 - 1. Bibliographic data (e.g. US EPA AP-42, APME)
 - 2. Real site data (e.g., from site questionnaires)
 - 3. Calculated data (generated from the results of site data, e.g. Electricity Production)
- DEAM[™] provides modules containing production data for different electricity and energy sources (i.e., calculated for different countries and regions)
 - Energy is usually a big driver in LCA studies, so applying geographically relevant data sets is very useful

DEAM[™] Database (3/3)

- DEAM[™] modules are fully documented with information identifying:
 - A description of the process
 - The data quality and sources: temporal, geographical, and technological information
- Modules can be created by the user. This is one place where the user can fill out data quality fields
- A user can also import other data sets to make TEAM[™] modules
 - The new TEAM[™] version 4.0 allows an easy integration of Ecoinvent data (European data by ETH)

System

- A System is made up of modules connected together
- Systems are built in TEAM[™] using the Russian puppet principle: systems are encapsulated within one another
- The benefit of this encapsulation:
 - The user can build highly complex models that are easy to follow and manage
 - The user can generate and analyze very simple or highly detailed results tables

ISO 14001 CERTIFIED

Car LCA: System Boundaries, Main Data and Assumptions

Building the Car LCA System

- First, draw the main systems in the car life cycle
- Next, model each system knowing the data and assumptions
- See next slides

Drawing the Main Systems in the Life Cycle

 I. Production ✓
🐉 Transportation to Local Dealer
🀉 Use
■ 3. End of Life

Car Production System

Only materials are modeled for this case study

Car Transportation System

Transportation to local dealer: 1000 miles traveled

Car Use Phase

 Assume 100,000 miles, using unleaded fuel, over the life of the car: 10 years

Car End-of-Life Phase

 Assume 60% of steel is recycled and 10% of plastic is recycled. No other EOL scenario is modeled for this case.

Creating the Inventory and Generating Results (1/2)

Link modules together, run results, and create inventory

Creating the Inventory and Generating Results (2/2)

• To be shown during the live demonstration

Life Cycle Interpretation (ISO 14043)

- "The objectives of life cycle interpretation are to analyze results, reach conclusions, explain limitations and provide recommendations based on the findings of the preceding phases of the LCA or LCI and to report the results of the life cycle interpretation in a transparent manner" according to ISO 14043
 - Identification phase
 - "Structure the results of LCI and LCIA in order to determine the significant issues"
 - Evaluation phase
 - "The objectives of the evaluation element are to establish and enhance the confidence in and the reliability of the results of the study, including the significant issues identified in identification phase"

Interpreting Results of the Car LCA

- Contribution analysis
- Impact Assessments
- Sensitivity analysis: transportation to use phase (to the dealer)
- Scenario analysis: numerous scenarios, dependent on time
- Life Cycle Comparison: current car vs. hybrid car

Impact Assessments in TEAM[™]

- New TEAM[™] 4.0 contains new impact assessment and weighting methods from a variety of sources, providing several assessment methods each for:
 - Resource depletion
 - Greenhouse effect (direct and indirect)
 - Ozone layer depletion
 - Air acidification
 - Nutrification/eutrophication
 - Photochemical oxidant formation
 - Human, terrestrial, and aquatic toxicity
 - Air odor
 - Land damage

Assessment Database

 Flows are displayed with the coefficient, operator used to calculate the impact, and the unit used for the impact

TEAM - Assessment Methods DB Edition					
Туре	Contributor Flows				
1. Impact Category	(a) Carbon Dioxide (CO2, fossil)				
Method	(a) Carbon Dioxide (CO2, fossil)				
IPCC-Greenhouse effect (direct, 100 years)	(a) Carbon Tetrafluoride (CCI4)				
Ec(R*Y)-Depletion of non renewable resourc Ec-Depletion of non renewable resources EPA-Maximum Incremental Reactivity EPS-Air EPS-Land use EPS-Metal Resources EPS-Non Renewable Energy EPS-Total EPS-Water ETH-Air Acidification	(a) CFC 11 (CFCI3) (a) CFC 113 (CF2CICFCI2) (a) CFC 114 (CF2CICF2CI) (a) CFC 115 (CF3CF2CI) (a) CFC 12 (CCI2F2) Include flow Bemove flow Contributor information Coefficient				
IPCC-Greenhouse effect (direct, 100 years)					
IPCC-Greenhouse effect (direct, 100 years, 1 IPCC-Greenhouse effect (direct, 20 years) IPCC-Greenhouse effect (direct, 500 years) USES-Aquatic Eco-toxicity USES-Human Toxicity	Method Unit Source g eq. CO2 Expected Unit for Flow				
Owner ecobilan					
User Log In root	Operator Year				
<u>Create method</u> <u>Delete method</u> <u>2</u>	Save Contributor Changes				
Version Language					
1 English (UK)	<u>G</u> o to flow view				

Performing Sensitivity or Scenario Analyses

- Example: Transportation
- The user runs the model simultaneously for several distances

##>TEAM Explorer - [Edit variables for simulation]								
‱> <u>F</u> ile	<u>E</u> dit F <u>o</u> rn	nat <u>S</u> imulatior	n <u>T</u> uning <u>W</u> indows <u>?</u>					
Bun Number of simulations 3 + Reference OUT:Car Life Cycle/Use/Car (used)								
G6								
	Α	В	С	D	E	F	G	
1					var1_1.txt	var1_2.txt	var1_3.txt	
2		_		_	ecob1_1.txt	ecob1_2.txt	ecob1_3.tx	
3	System D	escription)	VARIABLE					
4	NODE LC	MODULES	NAME	VALUE				
5		GlobalVari	transport to dealer	1000	250	1000	2000	
6								
7	NODE LC	NODES	NAME	VALUE				

Comparison LCA: System Boundaries, Main Data and Assumptions for a Hybrid

Life Cycle Comparison: Hybrid Car Use

Other TEAM[™] Features; Changes from v. 3.0

- Ability to perform varying methods of coproduct allocation and recycling; has other advanced LCA modeling features
- New, improved data management system
- Updated impact assessment methods, including IPPC, CML 2000, and ECO99 indicators
- New colors in TEAM, distinguishing between the various components in the model
- Web access for data updates

Annie Landfield

First Environment, Washington, DC (W) 202-962-8684, (M) 240-426-1098 alh@firstenvironment.com

First Environment Corporate Headquarters

Boonton, NJ 1-800-486-5869 www.firstenvironment.com

