Evaluation of the environmental impact of wired telecommunication networks in Japan

Kazue Ichino Takahashi

NTT Energy and Environment Systems Laboratories

Jiro Nakamura, Toshiyuki Maeda, Takeshi Origuchi

NTT Information Sharing Laboratory Group

Tatsuya Kunioka

NTT East Corporation,

Hiroo Harada, Shigeyuki Miyamoto

NEC Environment Technology Laboratories

Jun Fujimoto

The University of Tokyo

Introduction

Process LCA (P-LCA)

Specific products
Local level
Model analysis

In-depth analysis
Time-consuming

Bottom-up approach

VS.

Input-Output LCA (I/O-LCA)

General products
National level
Statistic analysis

Rough approximation Convenient

Top-down approach

Mutual correspondence?

Objective

Question:

If 10,000 subscribers communicated through wired telecommunication networks for 1 year, how much CO₂ would be discharged in Japan?

ProcessILCA (P-LCA)

Procedure for P-LCA

Modeling

List main utilities and facilities

- Correction of inventory data
 Based on on-site information
- Inventory analysisCO₂ emission

Model of local telecommunication network

Based on the Tokyo metropolitan area around 1998

K. I. Takahashi, J. Nakamura, Tatsuya Kunioka, H. Harada, S. Miyamoto, and J. Fujimoto, Proceedings of The Fifth International Conference on EcoBalance, S1-88, pp275-276, 2002

Inventory analysis (P-LCA)

- *Total CO₂ emission was about 700 t-CO₂/year/10000 subscribers.
- *End-user facilities were dominant sources.
- *Use stage was dominant factor in P-LCA.

I/O-LCA

I/O-LCA evaluation

Included environmental burden

In Domestic telecom CO₂ Out (CO₂)
(Heavy oil)

Direct environmental burden

Data for I/O-LCA

	Production	Use	Disposal	Recycling
End-user Facilities	I-O * (Production of communication equipment)	Public data**	None	None
Access Facilities	I-O* (Cables, Construction of ICT infrastructure)	I-O* (Domestic ICT)	None	Company data***
End Office Facilities	I-O* (Construction of ICT base)		None	Company data***

^{*}I-O: 1995 Input-Output tables for Japan and various public data.

^{**} Public data: Office automation report (1998), Catalogs for electric appliances etc.

^{***}Company data: NTT Environmental Report (2000)

Inventory analysis (I/O-LCA)

- *Total CO₂ emission about 1700 t-CO₂/year/10000 subscribers.
- *End-user facilities dominant sources.
- *Production and use stages almost identical in I/O-LCA.

P-LCA vs. I/O-LCA

*Total CO₂ emission for P-LCA about half that for I/O-LCA.

*Different ratios for each process.

P-LCA vs. I/O-LCA

P-LCA

I/O-LCA

P-LCA: End-use > Access > End office

Use > Produce >> Recycle

I/O-LCA: End-user > End office > Access

Produce = Use >> Recycle

Discussion

What are the differences between P-LCA and I/O-LCA?

- Different boundaries
 - e.g. I/O-LCA for end office facilities includes sales, marketing, and maintenance...
 - e.g. P-LCA remove the burdens from core networks.
- Limitations of P-LCA and I/O-LCA
 - e.g. City model ≠ General model
 Producer's price ≠ Retail price
- Cost oriented data vs. Material oriented data
 - Cost Environmental burdens?

Conclusion

Question:

If 10,000 subscribers communicated through wired telecommunication networks for 1 year, how much CO₂ would be discharged in Japan?

Answer:

Total environmental burdens about.....

700 t-CO₂ by P-LCA 1,700 t-CO₂ by I/O-LCA

- *End-user facilities dominant sources.
- *Use stage dominant factor in P-LCA.

Production and use stages almost identical in I/O-LCA.

Further study

- Evaluation for other telecommunication networks (Wireless telecommunication, ADSL, IP).
- Evaluation for ICT services.
- Developing low-energy consumption ICT facilities.

• Offer new environmental friendly lifestyles with ICT.

*ICT: Information and communication technology