Use of LCA Methods For The Recycling vs. Disposal Issue: Prices & Costs vs. Energy & Environmental Impacts

Dr. Jeffrey Morris
Sound Resource Management
jeff.morris@zerowaste.com
919-401-4444 or 360-319-2391

INLCA/LCM Conference – September 24, 2003

Prices for Refuse vs. Recycling,
Virgin vs. Recycled Materials,
&
Virgin vs. Recycled Content Products
Are Telling The Wrong Story

The Wrong Story

- Recycled-content products typically cost more than virgin-content products
- Recycled material prices are kept low by virgin material subsidies and virgin material prices that do not reflect public health and ecological impacts
- Total costs for recycling some waste and throwing the rest away are often greater than total costs for just throwing it all away.

Aluminum Ingot vs. Recycled Cans

Unbleached Softwood Kraft Pulp vs. Recycled Cardboard

Polyethylene Terephthalate Pellets vs. Recycled PET Bottles

ONP (#8) & Mixed Paper

Average Value Per Ton for Curbside Recyclables

Curbside Recycling vs. Avoided Disposal Costs in Four WA Regions

Net Cost for Curbside Recycling in Four WA Regions

Three Stages of a Product's Life Cycle

- EXTRACTION/MANUFACTURING
- USE
- WASTE MANAGEMENT

Virgin-Content Production Uses More Energy Than Recycled-Content Production

Energy Used for Resource Extraction & Product Manufacturing

Virgin-Content Production Creates More Pollution Than Recycled-Content Production

Greenhouse Gases from Resource Extraction & Product Manufacturing

Acidification from Resource Extraction & Product Manufacturing

Eutrophication from Resource Extraction & Product Manufacturing

Additional Energy Use and Pollution from Curbside Recycling Trucks Are Overshadowed by Conservation of Energy and Reduced Pollution from Recycled-Content Production

Recycling per Curbside Available Household in Four WA Regions

Energy Used for Extraction/Manufacturing of Materials Recycled in The UW Region

Energy Used for Waste Resources Management in The UW Region

The Disposal Life Cycle
Uses More Energy
Than
The Recycling Life Cycle

Disposal Methods in WA Regions

- Urban East 90% waste-to-energy incineration
- All Other Regions 100% landfill
- Landfill energy/environmental impact calculations assume 75% methane gas capture and flaring; in fact smaller, older landfills in WA do not have landfill gas capture systems. Also, 75% may be too high for actual landfill lifetime methane capture rate at most landfills.

Net Energy Use Reductions from Curbside Recycling in WA

The Disposal Life Cycle Generates More Pollution Than
The Recycling Life Cycle

Net Greenhouse Gas Reductions from Curbside Recycling in WA

Net Acidification Potential Reductions from Curbside Recycling in WA

Net Eutrophication Potential Reductions from Curbside Recycling in WA

Net Human Toxicity Potential Reductions from Curbside Recycling in WA

How Do We Value/Compare Environmental Benefits Against Costs?

- Categorize Pollutants by Impacts global warming, acid rain, smog, eutrophication of waterways, human toxicity, ecological toxicity, etc.
- Create Normalization Measures for Each Category
- Economic Costs vs. Weights
 Developed by Political Process or
 Other Methods (e.g., BEES 3.0)

Monthly Value per Household of Three Environmental Benefits from Pollutant Releases Avoided Thru Curbside Recycling in UW WA

	BEES	Estimated
	Normalized Value	Economic Value
	of Avoided Impacts	of Avoided Impacts
Global Warming	0.002851	\$1.61
Acidification	0.000001	\$1.05
Eutrophication	0.000095	\$0.53

External Cost of Air Pollutants (US\$ per pound)

Criteria Air Pollutants	Low	High
Carbon Monoxide (CO)	\$0.01	\$0.48
Nitrogen Oxides (NO _x)	0.41	4.53
Sulfur Oxides (SO _x)	0.07	2.23
Particulates (Total)	1.19	2.56
Lead (Pb)	0.19	528
Greenhouse Gases		
Carbon Dioxide (CO ₂)	0.0002	0.012
Methane (CH ₄)	0.01	0.38
Other Air Pollutants		
Hydrocarbons (non CH ₄)	0.26	0.26
Ammonia (NH ₃)	0.76	12.47
Hydrochloric Acid (HCL)	2.49	2.49

External Cost of Water Pollutants (US\$ per pound)

	Low	High
Dissolved Solids	No est.	No est.
Suspended Solids	\$6.23	\$6.23
BOD	0.08	0.08
COD	0	0
Oil	0.26	303.69
Sulfuric Acid	0.12	0.12
Iron	0	О
Ammonia	0.76	1.84
Copper	9.59	19.9
Cadmium	215.78	1,606.34
Arsenic	11.99	7,477.29
Mercury	2,464.00	6,233.72
Phosphate	0.12	0.12
Selenium	O	70.00
Chromium	335.66	335.66
Lead	61.54	528.00
Zinc	0.56	3.70

Reasonable Estimates for the Costs of Pollution Indicate That Recycling Actually Costs Less Than Garbage

Australian Kerbside Study: Recycling Costs Amount to Just 38% of Dollar Value of Net Environmental Benefits

- Environmental Benefits:
 - 75% from upstream air & water pollution decreases
 - 21% from upstream land use reductions & future resource access improvements
 - 4% from global warming credits
 - 2% from reduced land use for landfills
- Environmental Costs:
 - 2% from increased truck traffic

CO2 Value Per Ton Required to Offset Curbside Net Monthly Cost per Household in WA

	Recycling Per Month (lbs.)	Net Cost Per Month	CO2 Savings Per Month (lbs.)	CO2 Value to Offset Cost
Urban West	56	\$0.73	157	\$9
Urban East	26	\$0.85	55	\$31
Rural West	29	\$0.99	77	\$26
Rural East	19	\$1.35	64	\$42

What Will Make Recycling Profitable?

Policy Options to Correct Garbage Vs. Recycling Market Failures

- 1. Taxes/subsidies to change relative prices e.g., no-additional-charge ("free" or "bundled" or "embedded") recycling for garbage collection subscribers e.g., bundled commercial recycling decreases garbage disposal per employee by 10% to 20% and increases recycling by 10 percentage points.
- 2. Regulatory Actions e.g., cap & trade and bans.
- 3. Extended Producer/Product Responsibility & Product Stewardship e.g., deposit/refund systems.

Sulfur Dioxide Emissions Allowance Trading (average monthly prices)

Beverage Container Recycling Rates

- The 10 deposit/redemption states had a beverage container recycling rate of 71.6% in 1999 (redemption rates averaged 78%, varying between 69% and 95%)
- The 40 non-deposit/redemption states had a beverage container recycling rate of 27.9% in 1999