

A Study on The Eco-efficiencies for Recycling Methods of Plastics Wastes

Tak Hur, Song-Tack Lim, Hye-Jin Lee

Dept. of Material Chemistry & Engineering, Konkuk University, Seoul, Korea

- 1. Introduction
- **2.** LCA
- 3. Eco-efficiency
 - Eco-cost
 - Cost-benefit Analysis
 - Eco-efficiency

Industrial Waste Recycling R&D Center (IWRRC)

IWRRC was founded in 2000 to develop the recycling technologies of industrial wastes with economic efficiency for practical use.

(Unit : million \$)

1 st Phase			2 nd Phase	3 rd Phase	C	
	2000	2001	2002	(2003~2005)	(2006~2009)	Sum
Sum	9.8	10	10	31	42	103

Project Road Map of IWRRC

Phase	1 st Phase			2 nd Phase		3 rd Phase			
Objectives	Industry fundamentals of resource recycling		Establishing scale up of Commercial recycling		Upgrading recycling rate to 70%				
Year	2000	2001	2002	2003	2004	2005	2006 2007	2008	2009
Thermal Recycling	Fuel production / Gasification								
Material Recycling	Separation by solvolysis / Complex recycled product Key technology for plastic recycling								
Reutilization	Eco-materials from waste dust / Production of ceramics Material recycling from steel plant sludge								
Metal Reclamation	Precious metals reclamation / Metal recovery of used battery Metal recovery from surface treating solution								

Planning

Planning & Infrastructure :

Environmental evaluation by Life Cycle Assessment

Eco-efficiency

- The objective of sustainable waste management is to deal with society's waste in a way that is environmentally efficient, economically affordable and socially acceptable.
- To achieve sustainability or at least to move in the right direction, it is important to develop and improve methods that can be used to operationalize the guiding principle of sustainability.
- **Eco-efficiency** is recognized as "one of the primary way in which business can contribute to the concept of sustainable development".
- What is ultimately required are simple-to-use methods which give reliable results as a basis for decision.

Indicators for Eco-efficiency

- Needs for eco-efficiency indicators which analyze both environmental and economic aspects in an integrated fashion, since a good understanding and measurement of eco-efficiency is important.
- A significant number of indicators have been proposed around the world to measure the eco-efficiency. Most indicators attempt to incorporate one dimension (environment) into another dimension (affordability).
 - environmental sustainability index
 - eco-metrics
 - return on environment
 - GP index

✓ Eco-efficiency = Product or Service Value Environmental Influence

Life Cycle Cost/Selling Price

 $\checkmark \text{ ROE} = \frac{1}{\text{Scaled Impact Assessment}}$

Selling Price/Life Cycle Cost

✓ GP Index =

Life Cycle Environmental Impacts

An eco-efficiency model with one dimension...

- To develop a model where benefits and risks of non-economic dimensions (environment) can be transferred into monetary units.
- EVR Model (Delft Univ. of Technology, 2002)
 - EVR (Eco-cost/Value Ratio); an indicator for eco-efficiency
 - Eco-cost; a LCA based single indicator for environmental impact
 - prevention costs (instead of damage based models);
 costs to prevent pollution and depletion of materials and
 energy to a level to make our society sustainable.
 - Marginal prevention costs of emissions; the maximum costs of emissions which are assumed to be sufficient to create a sustainable situation.

<u>In this study,</u>

an indicator with one same dimension...

Eco-efficiency = net benefit/eco-cost

- Net benefit is obtained from the Cost-Benefit Analysis (CBA).
- Eco-cost is calculated from the marginal prevention costs of emissions based on Life Cycle Assessment (LCA).
- A case study for different recycling methods of plastic waste is studied to illustrate the applicability of the indicator.

- 1. Introduction
- **2.** LCA
- 3. Eco-efficiency
 - Eco-cost
 - Cost-benefit Analysis
 - Eco-efficiency

Goal & Scope Definition (1)

Goal :

To compare the environmental potential impacts of plastic recycling methods, MR, CR, and TR

Recycling methods	Recycling systems		
Material Recycling (MR)	The production of the secondary material		
Chemical Recycling (CR)	Oil production by pyrolysis		
Thermal Recycling (TR)	Incineration with heat recovery		

4 Function & functional unit

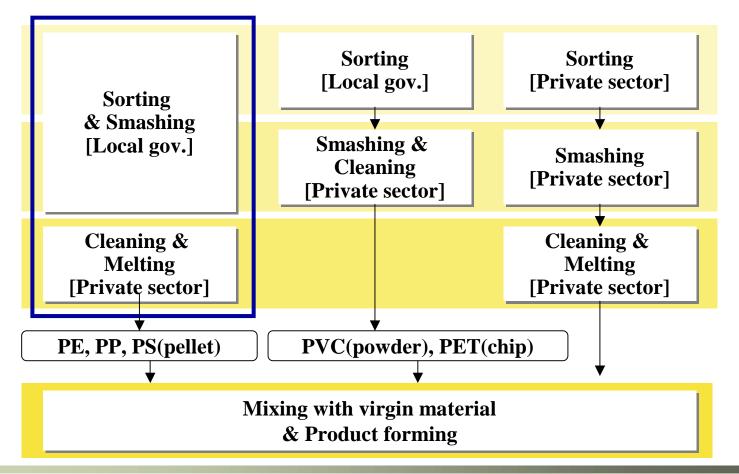
Function	recycling of the waste plastics		
Functional unit	recycling of the waste plastics 1kg		
Reference flow	waste plastic 1kg		

4 Data quality requirement

	On-site	Off-site(upstream, downstream)	
Time-related coverage	2002	within the last 10 years	
Geographical coverage	recycling processes	Korean DB : Electricity(KEPCO), Transportation(5ton Truck)	
Geographical coverage	in Korea	overseas DB : Chemical , Oil, Plastics, Steam production	
Technology coverage	average data	similar data with real process	

LCIA methodology

- 7 Impact categories are considered.

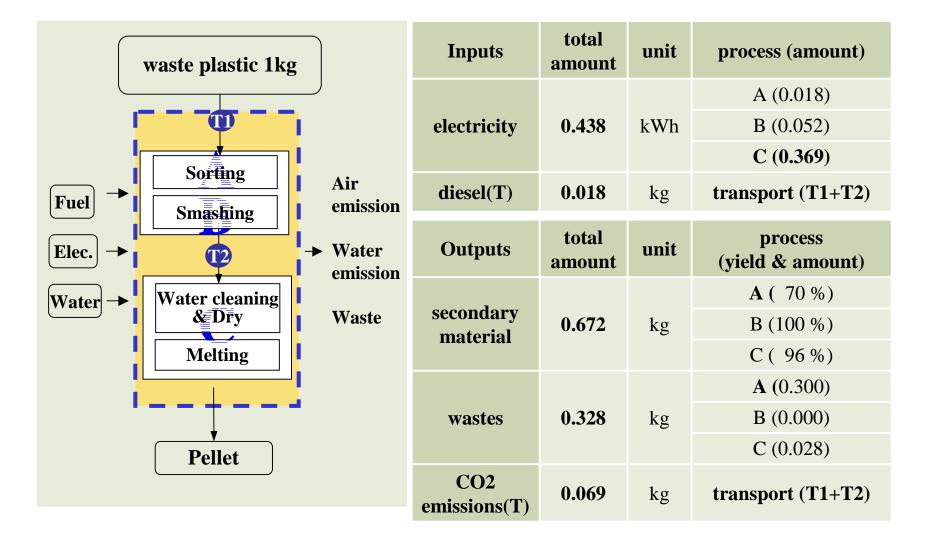

global warming, acidification, eutrophication, summer smog, winter smog, heavy metals, carcinogenics

- Normalization and weighting steps are not included.

MR - Data Collection

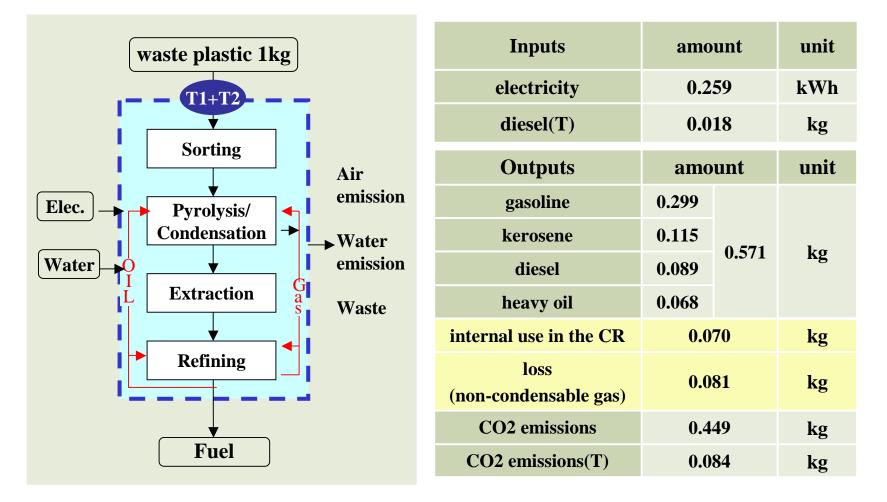
4 Types of the MR companies in Korea

Data collection from 30 companies


Data treatment

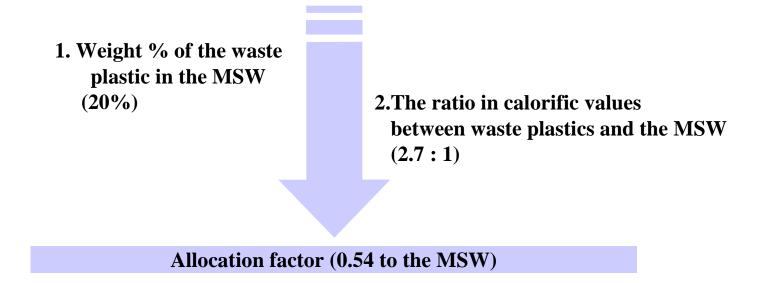
Sum of the unit processes

Konkuk Univ./LCA Lab.



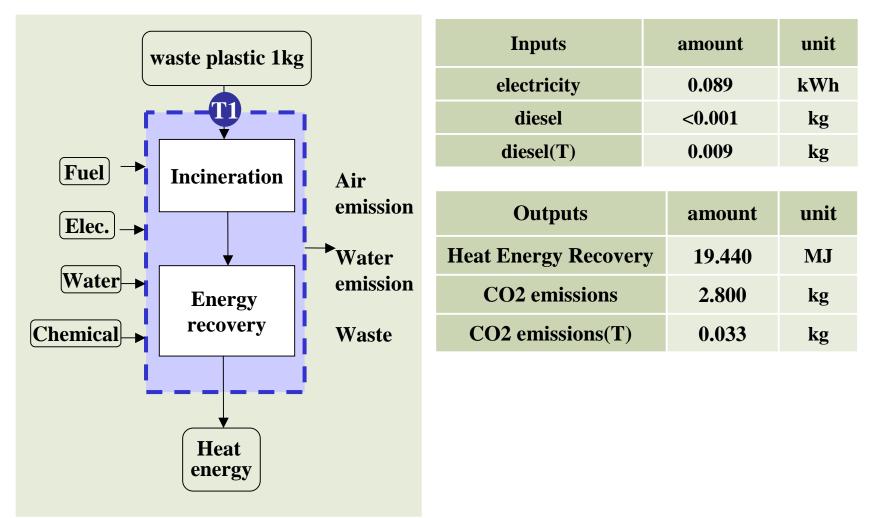
4 Process flow diagram & main inputs /outputs

4 Process flow diagram & main inputs /outputs

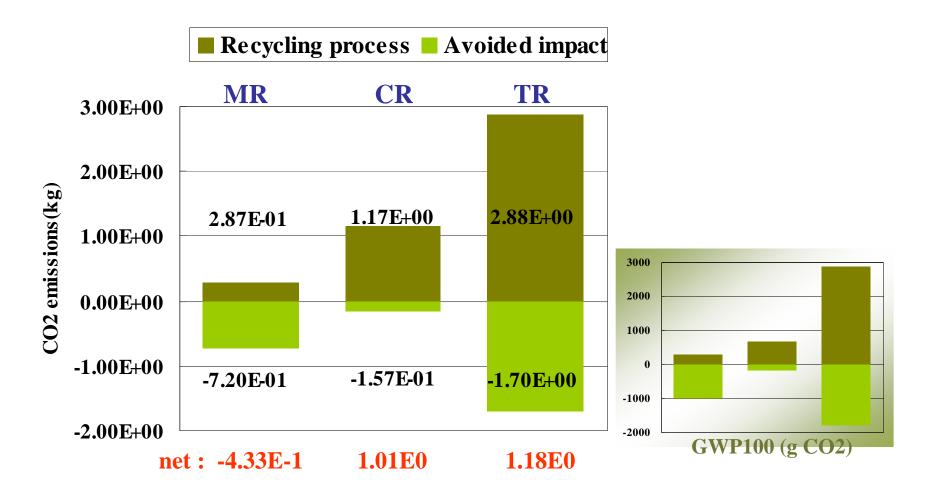


Data Source : 2001 ROICO, which is performing chemical recycling in Korea, data

Konkuk Univ./LCA Lab.


- **4** Data collection : 11 incineration with heat recovery facilities
- The heat recovery for the waste plastics was obtained based on the ratio of calorific values of MSW

Data Source : The Status of Incineration facility operation for the Domestic Wastes in 2001, Ministry of Environment 2002



4 Process flow diagram & main inputs /outputs

4 CO2 emissions from MR, CR and TR

Konkuk Univ./LCA Lab.

- 1. Introduction
- **2.** LCA
- 3. Eco-efficiency
 - Eco-cost
 - Cost-benefit Analysis
 - Eco-efficiency

Marginal Prevention Costs of Emissions (The Netherlands)

- Prevention global warming: 0.114 Euro/kg (CO2 equivalent)
- Prevention of acidification: 6.40 Euro/kg (SOx equivalent)
- Prevention of eutrofication: 3.05 Euro/kg (phosphate equivalent)
- Prevention of heavy metals: 680 Euro/kg (based on Zn)
- Prevention of carciogenics: 12.3 Euro/kg (PAH equivalent)
- Prevention of summer smog: 50.0 Euro/kg (based on VOC)
- Prevention of winter smog: 12.3 Euro/kg (based on fine dust)

lmpact category	MR		CR		TR	
global Warming	3.54E-01 (kg.C02 equi V.)	4.04E-2 (Euro)	7.31E-01 (kg.C02 equi V.)	8.33E-2	2.92E+00 (kg.C02 equiv.)	3.33E-1
aci di fi cati	1. 59E-03 (kg S04	1. 02E-2	2.46E-03 (kg S04	1.57E-2	1. 16E-03 (kg S04	7.42E-3
on eutrophicat i on	equi y 1.84E-04 (kg P04	5.61E-4	§9952-04 (kg P04	1.14E-3	f1.45E-04 (kg P04	4.42E-4
heavy metals	equiv.) 2.61E-08 (kg Pb	1. 77E-5	equiv.) 1.54E-08 (kg Pb	1.05E-5	equiv.) 6.62E-06 (kg Pb	4.50E-3
carci nogeni CS	equi v.) 2. 42E-11 (kg PAH)	20 ^{98E-}	equi v.) 7. 20E-12 (kg PAH)	8 ₁ 86E-	equi v.) 2. 32E-09 (kg PAH)	2.85E-8
winter smog	6.09E-04 (kg SPM)	7.49E-3	4.44E-04 (kg SPM)	5.46E-3	2.90E-04 (kg SPM)	3.57E-3
summer smog	2.23E-04 (kgC₂H₄) equi∛.*)	1. 12E-2	1.41E-04 (kgC₂H₄) equi∛.*)	7.05E-3	6.55E-05 (kgC₂H₄ equiv.)	3.28E-3
total eco-	6.99E-2		1.13E-1	(Euro)	3.52E-1	
cost	(Euro)		-		(Euro)	

- Economic aspect of each recycling method was investigated from the CBA study.

		MR	CR	TR	
Cost	collection and transportation (T1+T2)	labor cost for collection, and driving maintenance cost of vehicle		e	
Cost	operation cost	depreciation and maintenance cost of facility labor cost miscellaneous costs			
Benefit	Selling benefit	selling of plastic pellet	selling of oil	selling of heat energy	
Denent	Indirect benefit*	benefit as substitution effect of landfill cost		of landfill cost	
Net benefit (Benefits-Costs)		Net benefit of MR	Net benefit of CR	Net benefit of TR	

Material Recycling

Cost					
	Item	Amount (Euro)			
Operation cost	depreciation of facilities labor maintenance electricity wastes transportation	3.93E-2 4.54E-2 1.05E-2 3.21E-2 6.23E-3 1.65E-1			
MR cost	Total	2.98E-1			
	Benefit				
	Item	Amount (Euro)			
Benefit	plastic pellet selling	2.80E-1			
	Social benefit (substitution for Landfill)	1.81E-1			
MR benefit	Total	4.61E-1			

Thermal Recycling

Cost					
	Item	Amount (Euro)			
Operation cost	depreciation of facilities labor maintenance	2.06E-2 1.44E-2 3.51E-3 5.28E-2			
	electricity wastes transportation others	5.28E-3 3.27E-3 1.02E-1 9.31E-3			
TR cost	Total	1.58E-1			
Benefit					
	Item	Amount (Euro)			
Benefit	Steam selling	1.39E-2			
	Social benefit (substitution for Landfill)	1.81E-1			
TR benefit	Total	1.95E-1			

Chemical Recycling-1

(operating rate; 30%)

Costs				
	Item	Amount (Euro)		
Operation cost	depreciation of facilities labor maintenance electricity wastes transportation	1.42E-1 1.81E-1 1.83E-2 5.89E-3 3.93E-3 1.65E-1		
CR cost	R cost Total			
	Benefits			
	Item	Amount (Euro)		
Benefit	Oil selling price	2.55E-1		
	Social benefit (substitution for landfill)	1.81E-1		
CR Benefit	Total	4.36E-1		

Chemical Recycling-2

(operating rate; 90%)

Costs					
	Item	Amount (Euro)			
Operation cost	depreciation of facilities labor maintenance electricity wastes transportation	5.54E-2 6.35E-2 1.06E-2 3.42E-3 2.28E-3 1.65E-1			
CR cost	Total	3.00E-1			
	Benefits				
	Item	Amount (Euro)			
Benefit	Oil selling price	2.55E-1			
	Social benefit (substitution for landfill)	1.81E-1			
CR Benefit	Total	4.36E-1			

In this study,

Eco-efficiency = Value/Eco-cost (Benefit – Cost)/Eco-cost

\checkmark Eco-efficiency > 1	affordable,	sustainable
= 0-1	affordable,	not sustainable
< 0	not affordable,	not sustainable

	Benefi t	Cost (Euro)	Val ue (Euro)	Eco- cost	Eco- efficie
MR	(Euro) ABOIE-9)	2.98E-1	1.63E-1	(Euro) 8.99E-2	ncy 2. 33
CR-1	4. 36E-1	5.15E-1	-7.90E- 2	1.13E-1	-0. 70
CR-2	4.36E-1	3.00E-1	1.36E-1	1.13E-1	1. 20
TR	1. 95E-1	1.58E-1	3.70E-2	3.52E-1	0. 11

- LCI DB for plastic recycling methods were constructed as one of the 1st phase projects in the IWRRC.
- Measurement framework of Eco-efficiency was discussed.
 - An indicator for eco-efficiency was developed based on EVR (Eco-cost/Value Ratio) model.
 - Eco-cost is calculated from the marginal prevention costs of emissions (the Netherlands) based on the results of LCA.
 - Value is obtained from the CBA study.
- While MR is better than CR and TR is the poorest in terms of the potential environmental impacts from the LCA study, MR was the best and CR was the worst from the perspective of ecoefficiency.

- From the eco-efficiency indicator, MR is not only economically affordable but also sustainable, while TR is only economically affordable but not sustainable.
- At present, CR is neither affordable nor sustainable. CR can become affordable and sustainable by enhancing the operating rate up to 90%.
- The marginal prevention costs of emissions in Korea has to be developed so that the LCI results can take into account of the situation of the region where the emissions occur.
- In the next phase of this IWRRC project, the issues such as the differences in the quality and shape of waste plastics, data quality, and system boundary have to be considered to improve the reliability of the results.

Thanks for your attention.

Tak Hur

Professor School of Chemical & Biological Engineering Konkuk University

> takhur@konkuk.ac.kr Konkuk Univ./LCA Lab.