A Comparison of US and Canadian Industry Environmental Performance Using EIO-LCA Models

by

Andrew Bjorn (abjorn@u.washington.edu) Interdisciplinary PhD Program in Urban Planning (Urban Ecology IGERT) University of Washington

> Heather L. MacLean (hmaclean@ecf.utoronto.ca) Department of Civil Engineering University of Toronto

InLCA / LCM 2003 Conference 25 September 2003

An Overview...

- Basic concepts of the EIO-LCA model
- EIO-LCA in the US and Canada
- Creating the Canadian EIO-LCA model
- Comparisons between US, Canadian models
- Concluding remarks

What are Input-Output (IO) Models?

- Introduced by Wasily Leontief in 1941
- Assesses total economic impacts associated with an increase in "final demand"
- Based on lists of transactions between industries (System of National Accounts)
- Actively used in regional economic analysis

The Environment and IO Models

- Some researchers have predicted environmental effects with economic outputs:
 - Water use
 - Solid waste production
 - Ecological footprints
 - Energy use
- Carnegie Mellon Green Design Initiative: EIO-LCA Model

The EIO-LCA as an Equation

This model can be expressed in matrix form:

$\Delta \mathbf{E} = \begin{bmatrix} \mathbf{E} & (\mathbf{I} - \mathbf{B}\mathbf{D})^{-1} \end{bmatrix} \Delta \mathbf{Y}$

where: ΔE = change in environmental factors

E

B

- = environmental coefficients
 - = direct requirements matrix
- D = market share matrix
- $(I BD)^{-1} = \text{total requirements matrix}$
- $\Delta Y = column vector of demand change$

Assessment of EIO-LCA Approach

Advantages

- economy-wide analysis aids boundary issue
- quick results possible with analysis
- provides an understanding of interrelationships
- Disadvantages
 - commodity sectors are very aggregated
 - not geographically sensitive
 - (need for regional models)

 use/disposal of product, life-cycle of capital not explicitly included

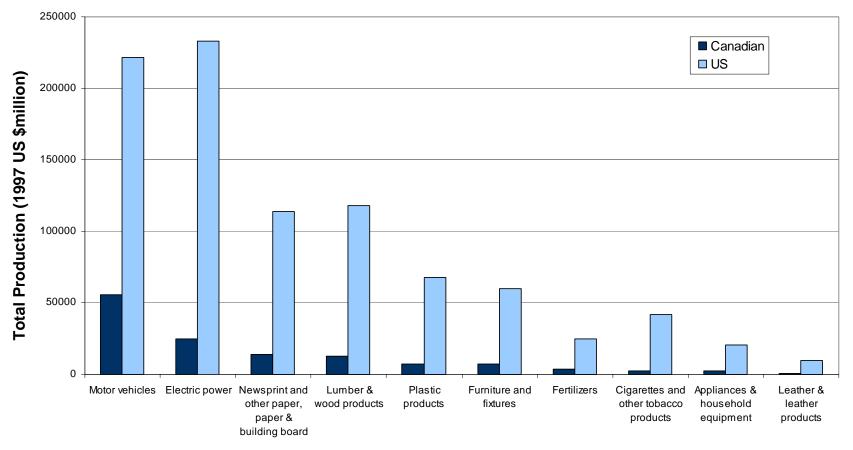
Economic Components of Model

- Based on 1998 data from Statistics Canada
- 1998 M-level input-output tables
 - 62 industries, 103 commodities
 - commodity-by-industry make and use tables
 - figures given in 1992 dollars
- Data suppression is a significant issue
 - some statistics unavailable privacy concerns
 - coefficients estimated from 1992-1997 data

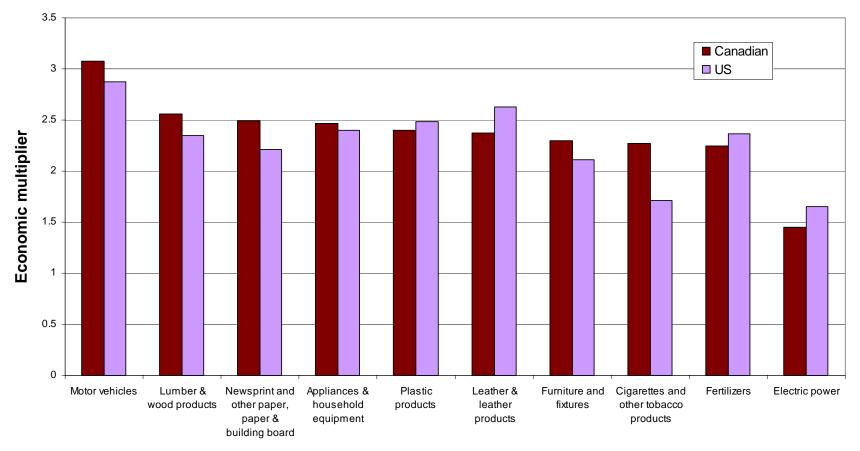
Environmental Components

- Greenhouse gas emissions
 - Data from Environment Canada GHG inventory
 - (Source: Environment Canada, 2002)
 - carbon dioxide, methane, nitrous oxide
- Resource use
 - data from NRCan, Environment Canada
 - fuel use, aluminum, iron ore, copper, nickel
- National Pollutant Release Inventory (NPRI)
 - Source: Environment Canada (1999)
 - 1998 data 130 waste compounds
 - air emissions, total waste emissions

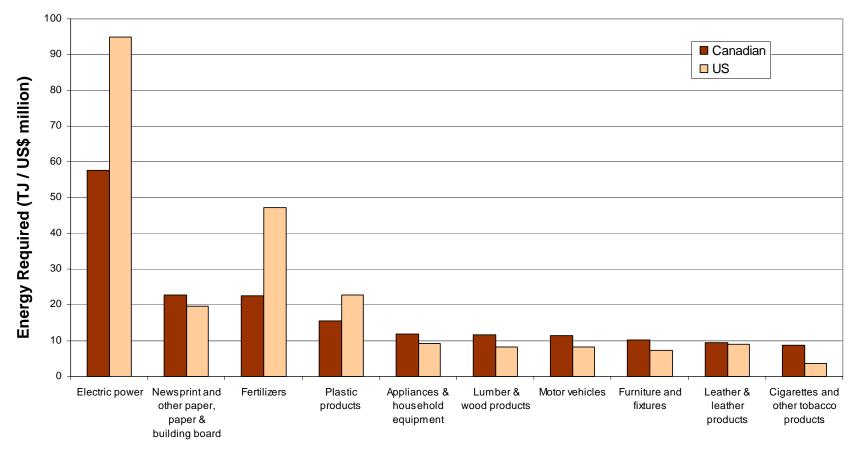
Comparing the US and Canada

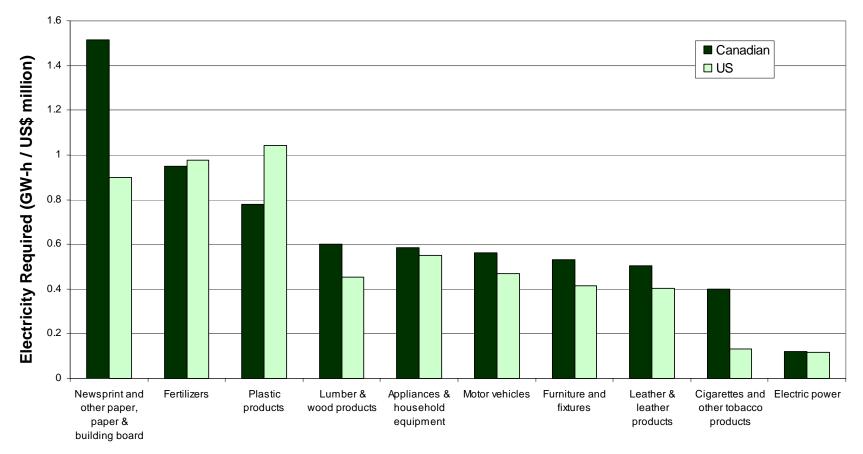

- Test scenario to compare models:
 - Green Design Initiative: 1997 US EIO-LCA Model (97 commodity sectors)
 - Unit increase in final demand: 1997 US\$1 million (converted to 1992 C\$1.11 million for Canadian model, OECD PPP)

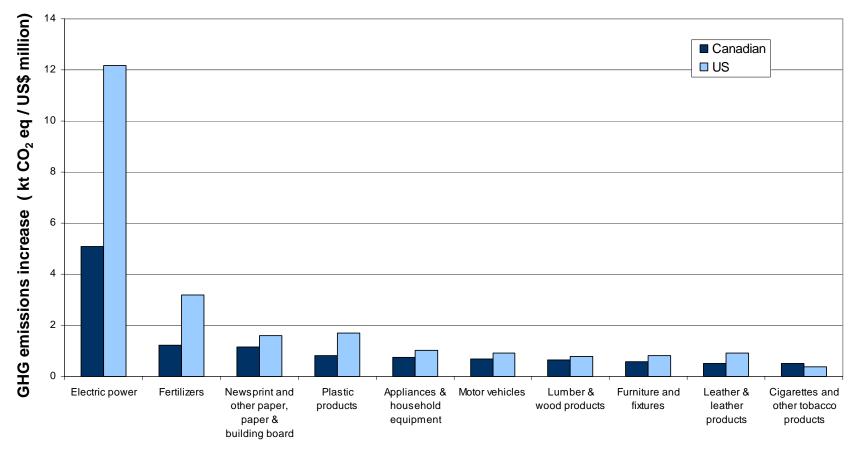
• Ten commodities examined:


- Motor vehicles
- Fertilizers
- Lumber and wood products
- Plastic products
- Electric power

- Cigarettes and tobacco products
- Furniture and fixtures
- Newsprint and other paper
- Leather and leather products
- Appliances


Comparison - Total Output


Comparison - Economic impact


Comparison - Energy

Comparison - Electricity

Comparison - GHG emissions

Comparing the US and Canada

- Notable results from comparison:
 - Similar results for many sectors
 - Lower GHG emissions for most Cdn sectors
 - Higher energy, electricity use for most Cdn sectors
 - Fertilizers, plastic products dissimilar:
 - Significantly lower energy consumption
 - Possible differences in commodity composition, aggregation of outputs of industry?
 - Cigarettes and tobacco products dissimilar:
 - Higher economic effects, energy demand, GHG emissions
 - Differences in commodity composition, efficiency?

Comparing the US and Canada

• Differences in Canadian context:

– Dispersed population, colder climate

(Higher energy / electricity use)

More hydroelectric capacity

(Lower GHG emissions for electric power, other sectors)

Net exporter of natural resources

(Greater share of effects incorporated in the model)

- Differences in regulations, reporting strategies
- Possible differences in commodities!
 - May complicate comparability with US

Concluding Remarks

- Notable differences in model results
 - differences in classifications, economic structure
 - (complicate comparability)
 - errors in data analysis
 - actual differences in impacts between countries
- Significant regional differences
 - Manitoba, Quebec: more hydroelectric generation
 - Alberta, Saskatchewan: more fossil-fuel generation
- Further research to refine model, comparisons with US results

Concluding Remarks

- Final goal: creating a bi-regional EIO-LCA model
 - Importance of bilateral trade:
 - 35% of US exports are sent to Canada
 - 90% of Canadian exports are sent to US
 - Increasing integration of economic sectors:
 - Automotive parts / assembly
 - Hydroelectricity
 - Forestry
 - Oil and gas

– Necessary to provide an international scope

Laura Declercq-Lopez and Sabrina Spatari Department of Civil Engineering, University of Toronto **Prof. William Beyers** Department of Geography, University of Washington **Prof. Marina Alberti** Department of Urban Planning, University of Washington