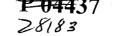
## **Composites and Polyalloys:**

The uniform dispersion of micron (<10  $\mu$ m or <0.4 mil) or sub-micron particles in an electroless metal deposit will enhance the wear, abrasion resistance and/or lubricity over base substrates and conventional electroless deposits. Composites containing fluoropolymers (PTFE), natural and synthetic (polycrystalline) diamonds, ceramics, chromium carbide, silicon carbide and aluminum oxide have been co-deposited. Most commercial deposition occurs with an acid electroless nickel bath due to its unique physical characteristics available to the final co-deposit. The reducing agent used may be either a hypophosphite or boron complex.


The inclusion of these finely divided particles within an electroless matrix (25 to 30% by vol.) involves the need to maintain uniform dispersion of the foreign material during metal deposition. Specialized equipment is required and part size, configuration and deposit thickness are limited. Deposition rates will vary, depending upon the type of electroless bath utilized. The surface morphology of the inclusion (i.e., type, size, distribution in the matrix) will greatly influence the final co-deposit properties and composition. Wear resistance is related to particle size and concentration in the electroless bath.

Applications include molds for rubber and plastic components, fasteners, precision instrument parts, mating components, drills, gauge blocks, tape recording heads and guides for computers.

Due to the resultant matrix surface topography (when using diamonds or silicon carbide, for example), the final surface roughness must be considered. Special postplate surface finish operations must be employed to regain the required RMS (microinch) finish. In severe abrasion applications involving high pressure foundry molding, it has been noted that the softer electroless nickel matrix wears first, exposing harder composite particles which create poor drawability of the resin/binder from the mold.

Polyalloys have been developed to produce deposits having three or four elements with specific coating properties. These include applications where unique chemical and high temperature resistance or electrical, magnetic or non-magnetic properties are requirements. The use of nickel-cobalt-iron-phosphorus polyalloys produce magnetic (for memory) properties. Other polyalloys include nickel-iron-phosphorus, nickel-cobaltphosphorus; nickel-iron-boron, nickel-tungsten-phosphorus, nickel-molybdenumboron, nickel-tungsten-tin-phosphorus, and nickel-copper-phosphorus. The final selection is dependent upon the final application and the economics of achieving the results required.

Electroless metal composites and polyalloys have made unique contributions to various engineering applications. Extensive field testing is ongoing to gain experience for proper applications, inclusions and sizes, plus proper electroless bath operating parameters for this new form of electroless plating.



POF

## **IMMERSION PLATING**

by Stanley Hirsch

Leeam Consultants Ltd., New Rochelle, NY

and

## **Charles Rosenstein**

CP Chemicals, Inc., Sewaren, NJ

Immersion (displacement) plating is the deposition of a metallic coating on a base metal from a solution which contains the coating metal. One metal is displaced by a metal ion with a lower oxidation potential than the displaced metal ion. This differs from electroless plating because in immersion plating reducing agents are not required to reduce the metal ions to metal, as the base metal acts as a reducing agent. When a steel part is immersed in a copper sulfate solution, the following reaction occurs:

 $Fe + Cu^{+2} \rightarrow Cu + Fe^{+2}$ 

The iron displaces the copper from its solution and the copper coats the steel part.

The thickness of deposits obtained by immersion plating is limited, because deposition stops when the entire surface of the base metal is coated. Higher temperatures increase reaction rates of immersion baths and stirring is sometimes beneficial. Parts must be properly cleaned prior to immersion.

Immersion baths are usually inexpensive and have excellent coverage. They permit plating on difficult surfaces, such as insides of tubing or in cases where there is difficulty in making electrical connections to isolated areas of the base metal. Immersion deposits are used for decorative purposes or as lubricants in drawing steel wire or shapes.

The accepted safety rules for handling acids, bases, cyanides and other solutions should be followed when operating an immersion bath. Fume hoods should be used when a process involves the liberation of hazardous or annoying fumes.

Table I gives the ingredients and operating temperatures for a variety of immersion deposits on different substrates.

## "Electroplating Engineering Handbook"

ed. by: L. J. Durney (4th Ed.)..... \$80.95

This standard handbook for electroplating engineers consists of two parts. The first provides general processing data such as metal preparation, testing and troubleshooting. The second comprises engineering fundamentals and practice. The handbook is a worthwhile addition to the finisher's library.

Include postage and handling; \$3.50 US, Canada & Mexico; \$6.00 foreign (in NJ add 6% Sales Tax) Price subject to change. Payment in US funds.

METAL FINISHING Three University Plaza, Hackensack, NJ 07601 201 / 487-3700

| Table I. Immersion Plating Formulations |                         |                                                                                            |                                                                                                                                  |          |                                                                                                                 |  |
|-----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|--|
| Type of<br>Deposit                      | Base Metal              | Ingredients                                                                                |                                                                                                                                  | Temp, °F | Comments                                                                                                        |  |
| Brass                                   | Aluminum                | Zinc oxide<br>Sodium hydroxide<br>Copper cyanide<br>Sodium cyanide<br>Basic lead carbonate | 112.5 g/L (15.0 oz/gal)<br>315.0 g/L (42.0 oz/gal)<br>13.1 g/L (1.75 oz/gal)<br>22.5 g/L (3.0 oz/gal)<br>0.14 g/L (0.018 oz/gal) | 115      |                                                                                                                 |  |
| Bronze                                  | Steel                   | Stannous sulfate<br>Copper sulfate<br>Sulfuric acid                                        | 3.8 g/L (0.5 oz/gal)<br>1.5 g/L (0.2 oz/gal)<br>11.0 ml/L (1.4 fl oz/gal)                                                        | Room     | Liquor finish on wire.                                                                                          |  |
| Cadmium                                 | Aluminum                | Cadmium sulfate<br>Hydrofluoric acid, 70%                                                  | 3.8 g/L (0.5 oz/gal)<br>70.0 ml/L (9.0 fl oz/gal)                                                                                | Room     |                                                                                                                 |  |
|                                         | Copper alloys           | Cadmium oxide<br>Sodium cyanide                                                            | 10.5 g/L (1.4 oz/gal)<br>90.0 g/L (12.0 oz/gal)                                                                                  | 105-160  |                                                                                                                 |  |
|                                         | Copper alloys and steel | Cadmium oxide<br>Sodium hydroxide                                                          | 4.5 g/L (0.6 oz/gal)<br>540.0 g/L (72.0 oz/gal)                                                                                  | 255      |                                                                                                                 |  |
| Copper                                  | Aluminum                | Copper sulfate<br>Ethylenediamine                                                          | 99.8 g/L (13.3 oz/gal)<br>99.8 g/L (13.3 oz/gal)                                                                                 | Room     | Alkaline solution. If difficulty arises<br>in plating certain aluminum alloys,<br>try acidic formulation below. |  |
|                                         | Aluminum                | Copper sulfate<br>Hydrofluoric acid, 70%                                                   | 202.5 g/L (27.0 oz/gal)<br>7.0 ml/L (0.9 fl oz/gal)                                                                              | Room     |                                                                                                                 |  |
|                                         | Steel                   | Copper sulfate<br>Sulfuric acid                                                            | 15.0 g/L (2.0 oz/gal)<br>0.5 ml/L (0.06 fl oz/gal)                                                                               | Room     |                                                                                                                 |  |

| Type of | · · ·                       |                                                                 | on Plating Formulations (Con                                                |         |                                                               |
|---------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|---------|---------------------------------------------------------------|
| Deposit | Base Metal                  | Base Metal Ingredients                                          |                                                                             |         | Comments                                                      |
|         | Zinc                        | Copper sulfate<br>Tartaric acid<br>Ammonia                      | 30.0 g/L (4.0 oz/gal)<br>52.5 g/L (7.0 oz/gal)<br>55.0 ml/L (7.0 fl oz/gal) | Room    |                                                               |
| Gold    | Copper alloys               | Potassium gold cyanide<br>Potassium cyanide                     | 2.3 g/L (0.3 tr oz/gal)<br>12.0 g/L (1.6 oz/gal)                            | 150-180 |                                                               |
|         | Copper alloys               | Hydrogen tetra-<br>chloroaurate<br>Ethanol                      | 1.0 g/L (0.1 tr oz/gal)<br>1000.0 ml/L (128.0 fl oz/gal)                    | Room    | Ethanol rinse.                                                |
|         | Copper alloys and palladium | Potassium gold cyanide<br>Ammonium citrate<br>Urea              | 5.0 g/L (0.6 tr oz/gal)<br>20.0 g/L (2.7 oz/gal)<br>25.0 g/L (3.3 oz/gal)   | 150-180 | Thiourea may be used in place of urea.                        |
| ead     | Copper alloys               | Lead monoxide<br>Sodium cyanide<br>Sodium hydroxide             | 3.8 g/L (0.5 oz/gal)<br>26.3 g/L (3.5 oz/gal)<br>105.0 g/L (14.0 oz/gal)    | 180-200 |                                                               |
| Nickel  | Copper alloys               | Nickel sulfate<br>Ammonium nickel sulfate<br>Sodium thiosulfate | 60.0 g/L (8.0 oz/gal)<br>60.0 g/L (8.0 oz/gal)<br>120.0 g/L (16.0 oz/gal)   | 100-150 |                                                               |
|         | Stee]                       | Nickel sulfate                                                  | 15.0 g/L (2.0 oz/gal)                                                       | 160     | Adjust pH 3.0-4.0 with sulfuric acid                          |
|         | Zinc                        | Nickel sulfate<br>Sodium chloride                               | 60.0 g/L (8.0 oz/gal)<br>30.0 g/L (4.0 oz/gal)                              | 150     | Adjust pH to 5.0 with sodium car-<br>bonate or sulfuric acid. |

384

385

mo vortastilitas vitas filit.

Harris and the lot

32. N.S. a.St

2.4

Sec. Sugar

| Table I. Immersion Plating Formulations (Continued) |                                         |                                                     |                                                                                   |          |                                                                    |
|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|----------|--------------------------------------------------------------------|
| Type of<br>Deposit                                  | Base Metal                              | Ingredients                                         |                                                                                   | Temp, °F | Comments                                                           |
| Palladium                                           | Copper alloys and nickel                | Palladium (II) chloride<br>Hydrochloric acid        | 8.2 g/L (1.0 tr oz/gal)<br>250.0 ml/L (32.0 fl oz/gal)                            | Room     | Seal the porous deposit by immersion<br>in 33% v ammonia solution. |
| Platinum .                                          | Copper alloys,<br>nickel and gold       | Chloroplatinic acid<br>Hydrochloric acid            | 12.3 g/L (1.5 tr oz/gal)<br>250.0 ml/L (32.0 fl oz/gal)                           | 150      |                                                                    |
| Rhodium                                             | Copper alloys                           | Rhodium (III) sulfate<br>Sulfuric acid              | 4.8 g/L (0.6 tr oz/gal)<br>25.0 ml/L (3.2 fl oz/gal)                              | Room     |                                                                    |
| Ruthenium                                           | Copper alloys,<br>gold and<br>palladium | Ruthenium nitrosyl<br>chloride<br>Hydrochloric acid | 11.5 g/L (0.6 tr oz/gal)                                                          | 200      |                                                                    |
|                                                     |                                         |                                                     | 250.0 ml/L (32.0 fl oz/gal)                                                       | · .      |                                                                    |
| Silver                                              | Copper alloys                           | Silver cyanide<br>Sodium cyanide                    | 7.5 g/L (0.9 tr oz/gal)<br>15.0 g/L (2.0 oz/gal)                                  | Room     |                                                                    |
|                                                     | Copper alloys                           | Silver nitrate<br>Ammonia<br>Sodium thiosulfate     | 7,5 g/L (0.9 tr oz/gal)<br>100.0 ml/L (12.8 fl oz/gal)<br>105.0 g/L (14.0 oz/gal) | Room     | Caution: Avoid skin contact, as silver nitrate discolors skin.     |
|                                                     | Zinc                                    | Silver cyanide<br>Potassium cyanide                 | 6.0 g/L (0.7 oz/gal)<br>3.8 g/L (0.5 oz/gal)                                      | Room     |                                                                    |

Fable I. Immersion Plating Formulations (Continued)

| Type of<br>Deposit | Base Metal    |                                                                | Ingredients                                                                | Temp, °F    | Comments                                                                                 |
|--------------------|---------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|
| Tin                | Aluminum      | Sodium stannate                                                | 45.0 g/L (6.0 oz/gal)                                                      | 150-180     | High sodium hydroxide causes<br>blisters. Solution used for coating<br>aluminum pistons. |
|                    | Copper alloys | Stannous chloride<br>Sodium cyanide<br>Sodium hydroxide        | 18.8 g/L (2.5 oz/gal)<br>187.5 g/L (25.0 oz/gal)<br>22.5 g/L (3.0 oz/gal)  | Room        |                                                                                          |
| аны А.<br>-        | Copper alloys | Potassium stannate<br>Potassium cyanide<br>Potassium hydroxide | 45.0 g/L (6.0 oz/gal)<br>105.0 g/L (14.0 oz/gal)<br>7.5 g/L (1.0 oz/gal)   | 100-150     |                                                                                          |
|                    | Copper alloys | Stannous chloride<br>Thiourea<br>Sulfuric acid                 | 3.8 g/L (0.5 oz/gal)<br>49.5 g/L (6.6 oz/gal)<br>12.0 ml/L (1.5 fl oz/gal) | 80-120      |                                                                                          |
|                    | Steel         | Stannous sulfate<br>Sulfuric acid                              | 1.5 g/L (0.2 oz/gal)<br>7.0 ml/L (0.9 fl oz/gal)                           | 180-Boiling | Produces white liquor finish on wire                                                     |
|                    | Zinc          | Stannous chloride                                              | 127.5 g/L (17.0 oz/gal)                                                    | Room        |                                                                                          |
| inc                | Aluminum      | Zinc oxide<br>Sodium hydroxide                                 | 90.0 g/L (12.0 oz/gal)<br>450.0 g/L (60.0 oz/gal)                          | Room        |                                                                                          |

60.0 g/L (8.0 oz/gal) 30.0 g/L (4.0 oz/gal)

Room

Steel

A LA LOBENTING CH.

Zinc chloride

Ammonium chloride

A State A A Sol

Table I. Immersion Plating Formulations (Continued)

Place parts in zinc baskets or mix parts with small zinc pieces.

۴