C.1 Pond Construction Standards/Specifications

These specifications are generally appropriate to all earthen ponds, and are adapted from NRCS Pond Code 378. Practitioners should always consult the New York State Department of Environmental Conservation – Dam Safety Division for the most recent guidance. All references to ASTM and AASHTO specifications apply to the most recent version.

Site Preparation

Areas designated for borrow areas, embankment, and structural works shall be cleared, grubbed and stripped of topsoil. All trees, vegetation, roots and other objectionable material shall be removed. Channel banks and sharp breaks shall be sloped to no steeper than 1:1. All trees shall be cleared and grubbed within 15 feet of the toe of the embankment.

Areas to be covered by the reservoir will be cleared of all trees, brush, logs, fences, rubbish and other objectionable material unless otherwise designated on the plans. Trees, brush, and stumps shall be cut approximately level with the ground surface. For dry stormwater management ponds, a minimum of a 25-foot radius around the outlet structure shall be cleared.

All cleared and grubbed material shall be disposed of outside and below the limits of the dam and reservoir as directed by the owner or his representative. When specified, a sufficient quantity of topsoil will be stockpiled in a suitable location for use on the embankment and other designated areas.

<u>Earth Fill</u>

<u>Material</u> - The fill material shall be taken from approved designated borrow areas. It shall be free of roots, stumps, wood, rubbish, stones greater than 6", frozen or other objectionable materials. Fill material for the center of the embankment, and cut off trench shall conform to Unified Soil Classification GC, SC, CH, or CL and must have at least 30% passing the #200 sieve. Consideration may be given to the use of other materials in the embankment if designed by a geotechnical engineer. Such special designs must have construction supervised by a geotechnical engineer.

Materials used in the outer shell of the embankment must have the capability to support vegetation of the quality required to prevent erosion of the embankment.

<u>**Placement</u>** - Areas on which fill is to be placed shall be scarified prior to placement of fill. Fill materials shall be placed in maximum 8 inch thick (before compaction) layers which are to be continuous over the entire length of the fill. The most permeable borrow material shall be placed in the downstream portions of the embankment. The principal spillway must be installed concurrently with fill placement and not excavated into the embankment.</u>

<u>Compaction</u> - The movement of the hauling and spreading equipment over the fill shall be controlled so that the entire surface of each lift shall be traversed by not less than one tread track of heavy equipment or compaction shall be achieved by a minimum of four complete passes of a sheepsfoot, rubber tired or vibratory roller. Fill material shall contain sufficient moisture such that the required degree of compaction will be obtained with the equipment used. The fill material shall contain sufficient moisture so that if formed into a ball it will not crumble, yet not be so wet that water can be squeezed out.

When required by the reviewing agency the minimum required density shall not be less than 95% of maximum dry density with a moisture content within 2% of the optimum. Each layer of fill shall be compacted as necessary to obtain that density, and is to be certified by the Engineer at the time of construction. All compaction is to be determined by AASHTO Method T-99 (Standard Proctor).

<u>Cut Off Trench</u> - The cutoff trench shall be excavated into impervious material along or parallel to the centerline of the embankment as shown on the plans. The bottom width of the trench shall be governed by the equipment used for excavation, with the minimum width being four feet. The depth shall be at least four feet below existing grade or as shown on the plans. The side slopes of the trench shall be 1 to 1 or flatter. The backfill shall be compacted with construction equipment, rollers, or hand tampers to assure maximum density and minimum permeability.

Embankment Core - The core shall be parallel to the centerline of the embankment as shown on the plans. The top width of the core shall be a minimum of four feet. The height shall extend up to at least the 10 year water elevation or as shown on the plans. The side slopes shall be 1 to 1 or flatter. The core shall be compacted with construction equipment, rollers, or hand tampers to assure maximum density and minimum permeability. In addition, the core shall be placed concurrently with the outer shell of the embankment.

Structure Backfill

Backfill adjacent to pipes or structures shall be of the type and quality conforming to that specified for the adjoining fill material. The fill shall be placed in horizontal layers not to exceed four inches in thickness and compacted by hand tampers or other manually directed compaction equipment. The material needs to fill completely all spaces under and adjacent to the pipe. At no time during the backfilling operation shall driven equipment be allowed to operate closer than four feet, measured horizontally, to any part of a structure. Under no circumstances shall equipment be driven over any part of a concrete structure or pipe, unless there is a compacted fill of 24" or greater over the structure or pipe.

Structure backfill may be flowable fill meeting the requirements of the New York State Department of Transportation. The mixture shall have a 100-200 psi; 28 day unconfined compressive strength. The flowable fill shall have a minimum pH of 4.0 and a minimum resistivity of 2,000 ohm-cm. Material shall be placed such that a minimum of 6" (measured perpendicular to the outside of the pipe) of flowable fill shall be under (bedding), over and, on the sides of the pipe. It only needs to extend up to the spring line for rigid conduits. Average slump of the fill shall be 7" to assure flowability of the material. Adequate measures shall be taken (sand bags, etc.) to prevent floating the pipe. When using flowable fill, all metal pipe shall be bituminous coated. Any adjoining soil fill shall be placed in horizontal layers not to exceed four inches in thickness and compacted by hand tampers or other manually directed compaction equipment. The material shall completely fill all voids adjacent to the flowable fill zone. At no time during the backfilling operation shall driven equipment be allowed to operate closer than four feet, measured horizontally, to any part of a structure. Under no circumstances shall equipment be driven over any part of a structure or pipe unless there is a compacted fill of 24" or greater over the structure or pipe. Backfill material outside the structural backfill (flowable fill) zone shall be of the type and quality conforming to that specified for the core of the embankment or other embankment materials.

Pipe Conduits

All pipes shall be circular in cross section.

Corrugated Metal Pipe - All of the following criteria shall apply for corrugated metal pipe:

Materials - (Polymer Coated steel pipe) - Steel pipes with polymeric coatings shall have a minimum coating thickness of 0.01 inch (10 mil) on both sides of the pipe. This pipe and its appurtenances shall conform to the requirements of AASHTO Specifications M-245 & M-246 with watertight coupling bands or flanges.

Materials - (Aluminum Coated Steel Pipe) - This pipe and its appurtenances shall conform to the requirements of AASHTO Specification M-274 with watertight coupling bands or flanges. Aluminum Coated Steel Pipe, when used with flowable fill or when soil and/or water conditions warrant the need for increased durability, shall be fully bituminous coated per requirements of AASHTO Specification M-190 Type A. Any aluminum coating damaged or otherwise removed shall be replaced with cold applied bituminous coating compound. Aluminum surfaces that are to be in contact with concrete shall be painted with one coat of zinc chromate primer or two coats of asphalt.

Materials - (Aluminum Pipe) - This pipe and its appurtenances shall conform to the requirements of AASHTO Specification M-196 or M-211 with watertight coupling bands or flanges. Aluminum Pipe, when used with flowable fill or when soil and/or water conditions warrant for increased durability, shall be fully bituminous coated per requirements of AASHTO Specification M-190 Type A. Aluminum surfaces that are to be in contact with concrete shall be painted with one coat of zinc chromate primer or two coats of asphalt. Hot dip galvanized bolts may be used for connections. The pH of the surrounding soils shall be between 4 and 9.

- Coupling bands, anti-seep collars, end sections, etc., must be composed of the same material and coatings as the pipe. Metals must be insulated from dissimilar materials with use of rubber or plastic insulating materials at least 24 mils in thickness.
- Connections All connections with pipes must be completely watertight. The drain pipe or barrel connection to the riser shall be welded all around when the pipe and riser are metal. Anti-seep collars shall be connected to the pipe in such a manner as to be completely watertight. Dimple bands are not considered to be watertight.All connections shall use a rubber or neoprene gasket when joining pipe sections. The end of each pipe shall be re-rolled an adequate number of corrugations to accommodate the bandwidth. The following type connections are acceptable for pipes less than 24 inches in diameter: flanges on both ends of the pipe with a circular 3/8 inch closed cell neoprene gasket, pre-punched to the flange bolt circle, sandwiched between adjacent flanges; a 12-inch wide standard lap type band with 12-inch wide by 3/8-inch thick closed cell circular neoprene gasket; and a 12-inch wide hugger type band with o-ring gaskets having a minimum diameter of 1/2 inch greater than the corrugation depth. Pipes 24 inches in diameter and larger shall be connected by a 24 inch long annular corrugated band using a minimum of 4 (four) rods and lugs, 2 on each connecting pipe end. A 24-inch wide by 3/8-inch thick closed cell circular neoprene gasket will be installed with 12 inches on the end of each pipe. Flanged joints with 3/8 inch closed cell gaskets the full width of the flange is also acceptable.

Helically corrugated pipe shall have either continuously welded seams or have lock seams with internal caulking or a neoprene bead.

Bedding - The pipe shall be firmly and uniformly bedded throughout its entire length. Where rock or soft, spongy or other unstable soil is encountered, all such material shall be removed and replaced with suitable earth compacted to provide adequate support.

Backfilling shall conform to Structure Backfill requirements.

Other details (anti-seep collars, valves, etc.) shall be as shown on the drawings.

<u>Reinforced Concrete Pipe</u> - All of the following criteria shall apply for reinforced concrete pipe:

- Materials Reinforced concrete pipe shall have bell and spigot joints with rubber gaskets and shall equal or exceed ASTM C-361.
- Bedding Reinforced concrete pipe conduits shall be laid in a concrete bedding / cradle for their entire length. This bedding / cradle shall consist of high slump concrete placed under the pipe and up the sides of the pipe at least 50% of its outside diameter with a minimum thickness of 6 inches. Where a concrete cradle is not needed for structural reasons, flowable fill may be used as described in the <u>Structure Backfill</u> section of this standard. Gravel bedding is not permitted.
- Laying pipe Bell and spigot pipe shall be placed with the bell end upstream. Joints shall be made in accordance with recommendations of the manufacturer of the material. After the joints are sealed for the entire line, the bedding shall be placed so that all spaces under the pipe are filled. Care shall be exercised to prevent any deviation from the original line and grade of the pipe. The first joint must be located within 4 feet from the riser.

Backfilling shall conform to **<u>Structure Backfill</u>** requirements.

Other details (anti-seep collars, valves, etc.) shall be as shown on the drawings.

Plastic Pipe - The following criteria shall apply for plastic pipe:

- 1. Materials PVC pipe shall be PVC-1120 or PVC-1220 conforming to ASTM D-1785 or ASTM D-2241. Corrugated High Density Polyethylene (HDPE) pipe, couplings and fittings shall conform to the following: 4" through 10" pipe shall meet the requirements of AASHTO M252 Type S, and 12" through 24" pipe shall meet the requirements of AASHTO M294 Type S.
- 2. Joints and connections to anti-seep collars shall be completely watertight.
- 3. Bedding -The pipe shall be firmly and uniformly bedded throughout its entire length. Where rock or soft, spongy or other unstable soil is encountered, all such material shall be removed and replaced with suitable earth compacted to provide adequate support.
- 4. Backfilling shall conform to <u>Structure Backfill</u> requirements.
- 5. Other details (anti-seep collars, valves, etc.) shall be as shown on the drawings.

<u>**Drainage Diaphragms</u>** - When a drainage diaphragm is used, a registered professional engineer will supervise the design and construction inspection.</u>

Concrete

Concrete shall meet the requirements of the New York State Department of Transportation.

<u>Rock Riprap</u>

Rock riprap shall meet the requirements of the New York State Department of Transportation.

Geotextile shall be placed under all riprap and shall meet the requirements of the New York State Department of Transportation.

Care of Water During Construction

All work on permanent structures shall be carried out in areas free from water. The Contractor shall construct and maintain all temporary dikes, levees, cofferdams, drainage channels, and stream diversions necessary to protect the areas to be occupied by the permanent works. The contractor shall also furnish, install, operate, and maintain all necessary pumping and other equipment required for removal of water from various parts of the work and for maintaining the excavations, foundation, and other parts of the work free from water as required or directed by the engineer for constructing each part of the work. After having served their purpose, all temporary protective works shall be removed or leveled and graded to the extent required to prevent obstruction in any degree whatsoever of the flow of water to the spillway or outlet works and so as not to interfere in any way with the operation or maintenance of the structure. Stream diversions shall be maintained until the full flow can be passed through the permanent works. The removal of water from the required excavation and the foundation shall be accomplished in a manner and to the extent that will maintain stability of the excavated slopes and bottom required excavations and will allow satisfactory performance of all construction operations. During the placing and compacting of material in required excavations, the water level at the locations being refilled shall be maintained below the bottom of the excavation.

Stabilization

All borrow areas shall be graded to provide proper drainage and left in a sightly condition. All exposed surfaces of the embankment, spillway, spoil and borrow areas, and berms shall be stabilized by seeding, liming, fertilizing and mulching in accordance with local Natural Resources Conservation Service Standards and Specifications.

Erosion and Sediment Control

Construction operations will be carried out in such a manner that erosion will be controlled and water and air pollution minimized. Federal, State and local laws concerning pollution abatement will be followed. Construction plans shall detail erosion and sediment control measures.

Operation and Maintenance

An operation and maintenance plan in accordance with Local or State Regulations will be prepared for all ponds. As a <u>minimum</u>, a dam inspection checklist shall be included as part of the operation and maintenance plan and performed at least annually. Written records of maintenance and major repairs need to be retained in a file.

Supplemental Stormwater Pond and Wetland Specifications

1. It is preferred to use the same material in the embankment as is being installed for the core trench. If this is not possible, a dam core with a shell may be used. The cross-section of the stormwater facility should show the limits of the dam core (up to the 10-year water surface elevation) as well as the acceptable materials for the shell. The shape of the dam core and the material to be used in the shell should be provided by the geotechnical engineer.

- 2. If the compaction tests for the remainder of the site improvements is using Modified Proctor (AASHTO T-180), then to maintain consistency on-site, modified proctor may be used in lieu of standard proctor (AASHTO T-99) for checking embankment compaction. The minimum required density using the modified proctor test method shall be at least 92% of maximum dry density with a moisture content of 2% of the optimum.
- 3. For all stormwater management facilities, a geotechnical engineer must be present to verify compaction in accordance with the selected test method. This information needs to be provided in a report to the design engineer, so that as-built certification of the facility can be made.
- 4. A 4-inch layer of topsoil shall be placed on all disturbed areas of the dam embankment. Seeding, liming, fertilizing, mulching, etc. shall be in accordance with NRCS Soil Standards and Specifications or New York State Standards and Specifications for Soil Erosion and Sediment Control. The purpose of the topsoil is to establish a good growth of grass which is not always possible with some of the materials that may be placed for the embankment fill.
- 5. Filter fabric placed beneath the rip-rap shall meet state or local department of transportation requirements for a Class "C" filter fabric. Some acceptable filter fabrics that meet the Class "C" criteria include:

Mirafi 180-N Amoco 4552 Webtec N07 Geolon N70 Carthage FX-70S

This is only a partial listing of available filter fabrics based on information provided by the manufacturers to the 1997 Specifier's Guide dated December 1996. It is the responsibility of the engineer to verify the adequacy of the material, as there are changes in the manufacturing process and the type of fabric used, which may affect the continued acceptance.

- 6. The design engineer and geotechnical engineer should make the determination that the settlement of the pond will not cause excessive joint extension. For further information on joint extension analysis, see NRCS Publication TR-18.
- 7. Fill placement shall not exceed a maximum of 8-inch lift thickness. Each lift shall be continuous for the entire length of the embankment.
- 8. The embankment fill **shall not** be placed higher than the centerline of the principle spillway until after the principle spillway has been installed.
- 9. The side slopes of a cut to repair a dam, install a principle spillway for an excavated pond, or other repair work, shall be stepped and on an average slope of 2:1 or flatter.

C.2 Construction Specifications for Infiltration Practices

Infiltration Trench General Notes and Specifications

The infiltration trench systems may not receive run-off until the entire contributing drainage area to the infiltration system has received final stabilization.

- 1. Heavy equipment and traffic shall be restricted from traveling over the infiltration trench to minimize compaction of the soil.
- 2. Excavate the infiltration trench to the design dimensions. Excavated materials shall be placed away from the trench sides to enhance trench wall stability. Large tree roots must be trimmed flush with the trench sides in order to prevent fabric puncturing or tearing of the filter fabric during subsequent installation procedures. The side walls of the trench shall be roughened where sheared and sealed by heavy equipment.
- 3. A Class "C" geotextile or better shall interface between the trench side walls and between the stone reservoir and gravel filter layers. A partial list of non-woven filter fabrics that meet the Class "C" criteria is contained below. Any alternative filter fabric must be approved by the local municipality prior to installation.

Mirafi 180-N Amoco 4552 WEBTEC N70 GEOLON N70 Carthage FX-80S

The width of the geotextile must include sufficient material to conform to trench perimeter irregularities and for a 6-inch minimum top overlap. The filter fabric shall be tucked under the sand layer on the bottom of the infiltration trench for a distance of 6 to 12 inches. Stones or other anchoring objects should be placed on the fabric at the edge of the trench to keep the trench open during windy periods. When overlaps are required between rolls, the uphill roll should lap a minimum of 2 feet over the downhill roll in order to provide a shingled effect.

- 4. A 6 inch sand layer may be placed on the bottom of the infiltration trench in lieu of filter fabric, and shall be compacted using plate compactors. The sand for the infiltration trench shall be washed and meet AASHTO Std. M-43, Size No. 9 or No. 10. Any alternative sand gradation must be approved by the Engineer or the local municipality.
- 5. The stone aggregate should be placed in lifts and compacted using plate compactors. A maximum loose lift thickness of 12 inches is recommended. Gravel filling (rounded bank run gravel is preferred) for the infiltration trench shall be washed and meet one of the following: AASHTO Std. M-43; Size No. 2 or No. 3.
- 6. Following the stone aggregate placement, the filter fabric shall be folded over the stone aggregate to form a 6-inch minimum longitudinal lap. The desired fill soil or stone aggregate shall be placed over the lap at sufficient intervals to maintain the lap during subsequent backfilling.
- 7. Care shall be exercised to prevent natural or fill soils from intermixing with the stone aggregate. All contaminated stone aggregate shall be removed and replaced with uncontaminated stone aggregate.

- 8. Voids can be created between the fabric and the excavation sides and shall be avoided. Removing boulders or other obstacles from the trench walls is one source of such voids, therefore, natural soils should be placed in these voids at the most convenient time during construction to ensure fabric conformity to the excavation sides.
- 9. Vertically excavated walls may be difficult to maintain in areas where soil moisture is high or where soft cohesive or cohesionless soils are predominate. These conditions may require laying back of the side slopes to maintain stability.
- 10. PVC distribution pipes shall be Schedule 40 and meet ASTM Std. D 1784. All fittings and perforations (1/2 inch in diameter) shall meet ASTM Std. D 2729. A perforated pipe shall be provided only within the infiltration trench and shall terminate 1 foot short of the infiltration trench wall. The end of the PVC pipe shall be capped.
- 11. Corrugated metal distribution pipes shall conform to AASHTO Std. M-36, and shall be aluminized in accordance with AASHTO Std. M-274. Coat aluminized pipe in contact with concrete with an inert compound capable of effecting isolation of the deleterious effect of the aluminum on the concrete. Perforated distribution pipe shall be provided only within the infiltration trench and shall terminate 1 foot short of the infiltration trench wall. An aluminized metal plate shall be welded to the end of the pipe.
- 12. The observation well is to consist of 6-inch diameter PVC Schedule 40 pipe (ASTM Std. D 1784) with a cap set 6 inches above ground level and is to be located near the longitudinal center of the infiltration trench. Preferably the observation well will not be located in vehicular traffic areas. The pipe shall have a plastic collar with ribs to prevent rotation when removing cap. The screw top lid shall be a "Panella" type cleanout with a locking mechanism or special bolt to discourage vandalism. A perforated (1/2 inch in diameter) PVC Schedule 40 pipe shall be provided and placed vertically within the gravel portion of the infiltration trench and a cap provided at the bottom of the pipe. The bottom of the cap shall rest on the infiltration trench bottom.
- 13. If a distribution structure with a wet well is used, a 4-inch PVC drain pipe shall be provided at opposite ends of the infiltration trench distribution structure. Two (2) cubic feet of porous backfill meeting AASHTO Std. M-43 Size No. 57 shall be provided at each drain.
- 14. If a distribution structure is used, the manhole cover shall be bolted to the frame.
 - NOTE: PVC pipe with a wall thickness classification of SDR-35 meeting ASTM standard D3034 is an acceptable substitution for PVC Schedule 40 pipe.

Infiltration Basins Notes and Specifications

1. The sequence of various phases of basin construction shall be coordinated with the overall project construction schedule. A program should schedule rough excavation of the basin (to not less than 2' from final grade) with the rough grading phase of the project to permit use of the material as fill in earthwork areas. The partially excavated basin, however, **cannot** serve as a sedimentation basin.

Specifications for basin construction should state: (1) the earliest point in progress when storm drainage may be directed to the basin, and (2) the means by which this delay in use is to be

accomplished. Due to the wide variety of conditions encountered among projects, each should be separately evaluated in order to postpone use as long as is reasonably possible.

- 2. Initial basin excavation should be carried to within 2 feet of the final elevation of the basin floor. Final excavation to the finished grade should be deferred until all disturbed areas on the watershed have been stabilized or protected. The final phase excavation should remove all accumulated sediment. Relatively light tracked equipment is recommended for this operation to avoid compaction of the basin floor. After the final grading is completed, the basin should retain a highly porous surface texture.
- 3. Infiltration basins may be lined with a 6- to 12-inch layer of filter material such as coarse sand (AASHTO Std. M-43, Sizes 9 or 10) to help prevent the buildup of impervious deposits on the soil surface. The filter layer can be replaced or cleaned when it becomes clogged. When a 6-inch layer of coarse organic material is specified for discing (such as hulls, leaves, stems, etc.) or spading into the basin floor to increase the permeability of the soils, the basin floor should be soaked or inundated for a brief period, then allowed to dry subsequent to this operation. This induces the organic material to decay rapidly, loosening the upper soil layer.
- 4. Establishing dense vegetation on the basin side slopes and floor is recommended. A dense vegetative stand will not only prevent erosion and sloughing, but will also provide a natural means of maintaining relatively high infiltration rates. Erosion protection of inflow points to the basin shall also be provided.
- 5. Selection of suitable vegetative materials for the side slope and all other areas to be stabilized with vegetation and application of required lime, fertilizer, etc. shall be done in accordance with the NRCS Standards and Specifications or your local Standards and Specifications for Soil Erosion and Sediment Control.
- 6. Grasses of the fescue family are recommended for seeding primarily due to their adaptability to dry sandy soils, drought resistance, hardiness, and ability to withstand brief inundations. The use of fescues will also permit long intervals between mowings. This is important due to the relatively steep slopes which make mowing difficult. Mowing twice a year, once in June and again in September, is generally satisfactory.

C.3 Construction Specifications for Bioretention, Sand Filters and Open Channels

Sand Filter Specifications

Material Specifications for Sand Filters

The allowable materials for sand filter construction are detailed in Table 1.

Sand Filter Testing Specifications

Underground sand filters, facilities within sensitive groundwater aquifers, and filters designed to serve urban hot spots are to be tested for water tightness prior to placement of filter layers. Entrances and exits should be plugged and the system completely filled with water to demonstrate water tightness.

All overflow weirs, multiple orifices and flow distribution slots to be field-tested as to verify adequate distribution of flows.

Sand Filter Construction Specifications

Provide sufficient maintenance access; 12-foot-wide road with legally recorded easement. Vegetated access slopes to be a maximum of 10%; gravel slopes to 15%; paved slopes to 25%.

Absolutely no runoff is to enter the filter until all contributing drainage areas have been stabilized.

Surface of filter bed to be *completely level*.

All sand filters should be clearly delineated with signs so that they may be located when maintenance is due.

Surface sand filters shall be planted with appropriate grasses as specified in your local NRCS Standards and Specifications guidance.

Pocket sand filters (and residential bioretention facilities treating areas larger than an acre) shall be sized with an ornamental stone window covering approximately 10% of the filter area. This surface shall be 2" to 5" size stone on top of a pea gravel layer (3/4 inch stone) approximately 4 to 6" of pea gravel.

Specifications Pertaining to Underground Sand Filters

Provide manhole and/or grates to all underground and below grade structures. Manholes shall be in compliance with standard specifications for each jurisdiction but diameters should be 30" minimum (to comply with OSHA confined space requirements) but not too heavy to lift. Aluminum and steel louvered doors are also acceptable. Ten-inch long (minimum) manhole steps (12" o.c.) shall be cast in place or drilled and mortared into the wall below each manhole. A 5= minimum height clearance (from the top of the sand layer to the bottom of the slab) is required for all permanent underground structures. Lift rings are to be supplied to remove/replace top slabs. Manholes may need to be grated to allow for proper ventilation; if required, place manholes *away* from areas of heavy pedestrian traffic.

Underground sand filters shall be constructed with a dewatering gate valve located just above the top of the filter bed should the bed clog.

Underground sand beds shall be protected from trash accumulation by a wide mesh geotextile screen to be placed on the surface of the sand bed; screen is to be rolled up, removed, cleaned and re-installed during maintenance operations.

Table C-1 Sand Filter Material Specifications

Parameter	Specification	Size	Notes
Sand	Clean AASHTO M-6 or ASTM C-33 concrete sand	0.02" to 0.04"	Sand substitutions such as Diabase and Graystone #10 are not acceptable. No calcium carbonated or dolomitic sand substitutions are acceptable. "Rock dust" cannot be substituted for sand.
Peat	Ash content: < 15% PH range: 5.2 to 4.9 Loose bulk density 0.12 to 0.15 g/cc	n/a	The material must be Reed-Sedge Hemic Peat, shredded, uncompacted, uniform, and clean.
Underdrain Gravel	AASHTO M-43 No. 67	0.25" to 0.75"	
Geotextile Fabric (if required)	ASTM D-751 (puncture strength - 125 lb.) ASTM D-1117 (Mullen Burst Strength - 400 psi) ASTM D-1682 (Tensile Strength - 300 lb.)	0.08" thick equivalent opening size of #80 sieve	Must maintain 125 gpm per sq. ft. flow rate. Note: a 4" pea gravel layer may be substituted for geotextiles meant to separate sand filter layers.
Impermeable Liner (if required)	ASTM D 751 (thickness) ASTM D 412 (tensile strength 1,100 lb., elongation 200%) ASTM D 624 (Tear resistance - 150 lb./in) ASTM D 471 (water adsorption: +8 to -2% mass)	30mil thickness	Liner to be ultraviolet resistant. A geotextile fabric should be used to protect the liner from puncture.
Underdrain Piping	ASTM D-1785 or AASHTO M-278	6" rigid schedule 40 PVC	3/8" perf. 6" on center, 4 holes per row; minimum of 3" of gravel over pipes; not necessary underneath pipes
Concrete (Cast-in-place)	See local DOT Standards and Specs. f=c = 3500 psi, normal weight, air-entrained; re- inforcing to meet ASTM 615- 60	n/a	on-site testing of poured-in-place concrete required: 28 day strength and slump test; all concrete design (cast-in-place or pre- cast) <i>not using previously approved State or local standards</i> requires design drawings sealed and approved by a licensed professional structural engineer.
Concrete (pre-cast)	per pre-cast manufacturer	n/a	SEE ABOVE NOTE
Non-rebar steel	ASTM A-36	n/a	structural steel to be hot-dipped galvanized ASTM A123

Specifications for Bioretention

Material Specifications

The allowable materials to be used in bioretention area are detailed in Table G.2.

Planting Soil

The soil shall be a uniform mix, free of stones, stumps, roots or other similar objects larger than two inches. No other materials or substances shall be mixed or dumped within the bioretention area that may be harmful to plant growth, or prove a hindrance to the planting or maintenance operations. The planting soil shall be free of noxious weeds.

The planting soil shall be tested and shall meet the following criteria:

pH range	5.2 - 7.0
organic matter	1.5 - 4%
magnesium	35 lb./ac
phosphorus P ₂ O ₅	75 lb./ac
potassium K ₂ O	85 lb./ac
soluble salts	not to exceed 500 ppm

All bioretention areas shall have a minimum of one test. Each test shall consist of both the standard soil test for pH, phosphorus, and potassium and additional tests of organic matter, and soluble salts. A textural analysis is required from the site stockpiled topsoil. If topsoil is imported, then a texture analysis shall be performed for each location where the top soil was excavated.

Since different labs calibrate their testing equipment differently, all testing results shall come from the same testing facility.

Should the pH fall out of the acceptable range, it may be modified (higher) with lime or (lower) with iron sulfate plus sulfur.

Compaction

It is very important to minimize compaction of both the base of the bioretention area and the required backfill. When possible, use excavation hoes to remove original soil. If bioretention areas are excavated using a loader, the contractor should use wide track or marsh track equipment, or light equipment with turf type tires. Use of equipment with narrow tracks or narrow tires, rubber tires with large lugs, or high pressure tires will cause excessive compaction resulting in reduced infiltration rates and storage volumes and is not acceptable. Compaction will significantly contribute to design failure.

Compaction can be alleviated at the base of the bioretention facility by using a primary tilling operation such as a chisel plow, ripper, or subsoiler. These tilling operations are to refracture the soil profile through the 12 inch compaction zone. Substitute methods must be approved by the engineer. Rototillers typically do not till deep enough to reduce the effects of compaction from heavy equipment.

Rototill 2 to 3 inches of sand into the base of the bioretention facility before back filling the required sand layer. Pump any ponded water before preparing (rototilling) base.

When back filling the topsoil over the sand layer, first place 3 to 4 inches of topsoil over the sand, then rototill the sand/topsoil to create a gradation zone. Backfill the remainder of the topsoil to final grade.

When back filling the bioretention facility, place soil in lifts 12" or greater. Do not use heavy equipment within the bioretention basin. Heavy equipment can be used around the perimeter of the basin to supply soils and sand. Grade bioretention materials by hand or with light equipment such as a compact loader or a dozer/loader with marsh tracks.

Plant Installation

Mulch around individual plants only. Shredded hardwood mulch is the only accepted mulch. Pine mulch and wood chips will float and move to the perimeter of the bioretention area during a storm event and are not acceptable. Shredded mulch must be well aged (6 to 12 months) for acceptance.

The plant root ball should be planted so $1/8^{th}$ of the ball is above final grade surface.

Root stock of the plant material shall be kept moist during transport and on-site storage. The diameter of the planting pit shall be at least six inches larger than the diameter of the planting ball. Set and maintain the plant straight during the entire planting process. Thoroughly water ground bed cover after installation.

Trees shall be braced using 2" X 2" stakes only as necessary and for the first growing season only. Stakes are to be equally spaced on the outside of the tree ball.

Grasses and legume seed shall be tilled into the soil to a depth of at least one inch. Grass and legume plugs shall be planted following the non-grass ground cover planting specifications.

The topsoil specifications provide enough organic material to adequately supply nutrients from natural cycling. The primary function of the bioretention structure is to improve water quality. Adding fertilizers defeats, or at a minimum, impedes this goal. Only add fertilizer if wood chips or mulch is used to amend the soil. Rototill urea fertilizer at a rate of 2 pounds per 1000 square feet.

Underdrains

Under drains to be placed on a 3'-0" wide section of filter cloth. Pipe is placed next, followed by the gravel bedding. The ends of under drain pipes not terminating in an observation well shall be capped.

The main collector pipe for underdrain systems shall be constructed at a minimum slope of 0.5%. Observation wells and/or clean-out pipes must be provided (one minimum per every 1000 square feet of surface area).

Miscellaneous

The bioretention facility may not be constructed until all contributing drainage area has been stabilized.

Table C.2 Materials Specifications for Bioretention

Parameter	Specification	Size	Notes
Plantings	see your local NRCS	n/a	plantings are site-specific
	guidance.		
Planting Soil	sand 35 - 60%	n/a	USDA soil types loamy sand, sandy loam or loam
[4= deep]	silt $30 - 55\%$ clay $10 - 25\%$		
Mulch	shredded hardwood		aged 6 months, minimum
pea gravel diaphragm and	pea gravel: ASTM D 448	pea gravel: No. 6	
curtain drain	ornamental stone: washed	stone: 2 to 5	
	cobbles		
Geotextile	Class "C" apparent opening size (ASTM-D-4751) grab	n/a	for use as necessary beneath underdrains only
	tensile strength (ASTM-D- 4632) burst strength (ASTM-		
	D-4833)		
underdrain gravel	AASHTO M-43. No. 67.	0.25" to 0.75"	
underdrain piping	ASTM D 1785 or AASHTO M-278	6" rigid schedule 40 PVC	3/8" perf. @ 6" on center, 4 holes per row; minimum of 3" of gravel over pipes; not necessary underneath pipes
poured in place concrete (if	See local DOT Standards	n/a	on-site testing of poured-in-place concrete required:
required)	and Specs.; $f=c = 3500$ psi.		28 day strength and slump test; all concrete design (cast-in-place or
	(a) 28 days, normal weight,		pre-cast) not using previously approved State or local standards
	meet ASTM 615-60		professional structural engineer.
sand	AASHTO M-6 or ASTM C-	0.02" to 0.04"	Sand substitutions such as Diabase and Graystone #10 are not
[1= deep]	33		acceptable. No calcium carbonated or dolomitic sand substitutions
			are acceptable. No "rock dust" can be used for sand.

Specifications for Open Channels and Filter Strips

Material Specifications

The recommended construction materials for open channels and filter strips are detailed in Table G.3.

Dry Swales

Roto-till soil/gravel interface approximately 6" to avoid a sharp soil/gravel interface.

Permeable soil mixture (20" to 30" deep) should meet the bioretention planting soil specifications.

Check dams, if required, shall be placed as specified.

System to have 6" of freeboard, minimum.

Side slopes to be 3:1 minimum; (4:1 or greater preferred).

No gravel or perforated pipe is to be placed under driveways.

Bottom of facility to be above the seasonably high water table.

Seed with flood/drought resistant grasses; see your local NRCS Standards and Specifications guidance.

Longitudinal slope to be 1 to 2%, maximum [up to 5% with check dams].

Bottom width to be 8'= maximum to avoid braiding; larger widths may be used if proper berming is supplied. Width to be 2'= minimum.

Wet Swales

Follow above information for dry swales, with the following exceptions: the seasonally high water table may inundate the swale; but not above the design bottom of the channel [NOTE: if the water table is stable within the channel; the WQv storage may start at this point]

Excavate into undisturbed soils; do not use an underdrain system.

Filter Strips

Construct pea gravel diaphragms 12" wide, minimum, and 24" deep minimum.

Pervious berms to be a sand/gravel mix (35-60% sand, 30-55% silt, and 10-25% gravel). Berms to have overflow weirs with 6 inch minimum avilable head.

Slope range to be 2% minimum to 6% maximum.

Parameter	Specification	Size	Notes
Dry swale soil	USCS; ML, SM, SC	n/a	soil with a higher percent organic content is preferred
Dry Swale sand	ASTM C-33 fine aggregate concrete sand	0.02" to 0.04"	
Check Dam (pressure treated)	AWPA Standard C6	6" by 6" or 8" by 8"	do not coat with creosote; embed at least 3= into side slopes
Check Dam (natural wood)	Black Locust, Red Mulberry, Cedars, Catalpa, White Oak, Chestnut Oak, Black Walnut	6" to 12" diameter; notch as necessary	do not use the following, as these species have a predisposition towards rot: Ash, Beech, Birch, Elm, Hackberry, hemlock, Hickories, Maples, Red and Black Oak, Pines, Poplar, Spruce, Sweetgum, Willow
Filter Strip sand/gravel pervious berm	sand: per dry swale sand gravel; AASHTO M- 43 No. 57	sand: 0.02" to 0.04" gravel: 2" to 1"	mix with approximately 25% loan soil to support grass cover crop; see Bioretention planting soil notes for more detail.
pea gravel diaphragm and curtain drain	ASTM D 448	varies (No. 6) or (1/8" to 3/8")	use clean bank-run gravel
under drain gravel	AASHTO M-43 No. 67	0.25" to 0.75"	
under drain	ASTM D -1785 or AASHTO M-278	6" rigid Schedule 40 PVC	3/8" perf. @ 6" o.c.; 4 holes per row
Geotextile	See local DOT Standards and Specs	n/a	
rip rap	per local DOT criteria	size per New York State DOT requirements based on 10-year design flows	

Table U.S. Open vegetated Swale and Filter Strip Materials Specifications	Table C.3	Open	Vegetated	Swale and	d Filter S	Strip Mat	erials Si	pecificatio	ns
---	-----------	------	-----------	-----------	------------	-----------	-----------	-------------	----

New York Stormwater Management Design Manual