SuperCritical Fluids for Single Wafer Cleaning

Edward Bok, Integrated Automation, Badhoevedorp, The Netherlands
Dieter Kelch, Messma-Kelch Robot, Schorndorf, Germany
Kevin S. Schumacher, S&K Products International Inc.; Chestnut Ridge, New York

Supercritical fluid extraction is the name given to a cleaning process that removes contaminants using a supercritical fluid, that is, a gas-like substance above its critical temperature and pressure. Supercritical fluids possess liquid-like solvating properties and gas-like diffusion and viscosity that enables rapid penetration into crevices and boundary layer films with complete removal of organic and inorganic contaminants contained therein. Moreover, by cycling pressure between supercritical and subcritical values, particles can be very effectively dislodged during the expansion phase of the pulsation (Fig. 1).

The definition of a supercritical fluid can be fully appreciated by examining a phase diagram such as the one for CO₂ in Fig. 2. The key property is that above the critical temperature (Tc) condensation cannot occur at any pressure. The region to the right of Tc and above Pc defines the supercritical state. A supercritical fluid can have very high density.

CO₂ as the Cleaning Fluid

Supercritical CO₂ was chosen as a primary cleaning fluid for its low viscosity (0.05 centipoise), high diffusivity, and very low surface tension, as well as other environmental, safety, and cost considerations (Table I). For CO₂, the critical temperature, Tc, is 31 °C and the critical pressure is also in a practical range (Pc = 73 bar = 1050 psi).

Figure 3 shows density versus pressure for an isotherm just above the critical temperature. Density changes dramatically with pressure near the critical point. At 31 °C, for example, the density is only 0.002 g/cm³ at ambient pressure, compared to 0.468 g/cm³ at Pc (a 234-fold increase!).

CO₂ above Pc has a density and solvating capabilities comparable to organic liquids. The solvent strength of CO₂ varies with pressure for a constant temperature. Physicochemical properties can be exploited both above and below Pc, i.e., supercritical and subcritical properties are both important in a well-designed cleaning process. In such a process, the fluid is cycled between two pressures as indicated in Fig. 3.

Wafer Cleaning Process

A wafer cleaning system that uses CO₂ in the critical region has recently been introduced. As shown in Fig. 4, the wafer is loaded between the upper and lower blocks of the cleaning chamber. The chamber height is about 5 mm during loading, and the wafer is held therein by vacuum grips in the top block. The lower block is then raised until the chamber is sealed, at which point the chamber
height is only slightly larger than the wafer thickness (-1 mm). CO₂ pressurized at ~800 psi is then supplied through centrally positioned orifices.

During the cleaning cycle, the supercritical fluid is pulsed by a hydraulic mechanism. The lower chamber block is actually a thin-walled, stainless steel membrane, i.e., a diaphragm. The hydraulic fluid pressure changes the chamber height via elastic deformation of the diaphragm, i.e., the supercritical fluid pressure is varied according to the volume of the cleaning chamber. Pressure is typically cycled between 800 and 1200 psi at a frequency of 25 to 50 Hz.

A separate expulsion cycle is used less frequently (every 1 to 3 sec) to replenish the cleaning fluid with fresh fluid. The expulsion cycle is effected by dropping the lower chamber block so a gap is opened to atmospheric pressure around the outer circumference of the cleaning chamber. Contaminant-carrying fluid then rushes outward through passages into the exhaust system. The seal is then reclosed and fresh fluid is admitted through the inlet valves, which are centrally positioned above and below the wafer chamber.

The “stored energy” of the supercritical fluid is the main factor contributing to cleaning effectiveness. Residues are ejected during expansion, and supercritical fluid is forced into crevices during compression. A 40 sec process usually removes all contaminants in this manner. Nonetheless, additives may be included to modify the chemical properties, polarity, or solvating power of the fluid. For example, O₂, O₃, or H₂O₂ may be used to oxidize the wafer surface or organic contaminants. Through the use of such additives, the technology can be optimized for specific applications.

Microscopic Cleaning Dynamics

The compression cycle mixes and whirls the fluid in the upper and lower cleaning gaps. Density increases threefold (from 0.21 to 0.63 g/cm³). The cleaning fluid penetrates molecular layers and micrometer-sized crevices. Substantial fluid movement contributes to mechanical scrubbing, particle dislodging, and dissolving of organic material.

During the expansion stroke, the CO₂ changes from a supercritical fluid to a subcritical gas. Density decreases threefold, causing rapid mixing actions and outflow of fluid from the wafer surfaces. The fluid, moving at high velocities, quickly relocates suspended particles and dissolved contaminants. These are flushed out of the chamber by makeup cleaning fluid during the expulsion step. Redeposition is prevented by the rapidity of fluid flow throughout the process.

Suspended contaminants are removed from the cleaning chamber during the expulsion cycle which occurs every 1 to 3 sec. At this time, nearly all of the fluid is expelled from the center in a lateral outward direction. The seal is then closed and makeup CO₂ is centrally injected into the upper and lower cleaning gaps, surrounding the wafer.

Cleaning Unit

A double floating (DF), pulsating, wafer cleaning unit is shown in Fig. 5. The “DF” designation refers to the fact that the wafer floats freely in supercritical fluid, not touching either the top or bottom of the chamber. This is accomplished by properly timing the inflow of fluid through the lower input valve, so that the wafer is always floating on a cushion of fluid. Early designs allowed for cleaning on only one side of the wafer. The DF unit is an advanced design which allows both sides of the wafer to be cleaned simultaneously.

The wafer cleaning chamber is designed for an 8 in. wafer. The entrance and exit portals for robotic wafer transfer into and out of the cleaning module are only 5 mm high. During loading and unloading, the lower chamber drops several millimeters to accommodate the robotic transfer arm. When the wafer is first loaded in the chamber, it is held against the upper chamber by a vacuum grip. The lower chamber block is then raised...
until the unoccupied volume within the chamber is extremely small.

The lower cleaning gap is very small (<30 μm). As a result, the wafer follows the reciprocating movement of the lower chamber block. A hydraulically actuated pulsator in the central section drives the lower chamber block. This provides an optimal wafer cleaning action in both the upper and lower wafer clean gaps. The total fluid volume surrounding all sides of the wafer is only about 5 cm³ (≈ π r² h = π 20 × 20 × 0.0125 cm³) in the uncompressed (800 psi) position. This low cleaning fluid requirement simplifies control of fluid purity.

The fluid properties and chamber design are such that the pressure varies little from the top to bottom surfaces of the wafers. At any given time, even during the strokes, an essentially uniform pressure distribution exists in the chamber. The wafer is totally surrounded by the cleaning fluid during the cleaning process. Thus the wafer is not physically stressed by the thrusts or pressure changes of the cleaning fluid.

The diaphragm was a key element of the equipment design. The diaphragm needed to be thin enough to undergo significant elastic deformation, yet strong enough to withstand the high operating pressures of the process requirement. The chamber is presently designed to withstand continuous operating pressures up to 1500 psi.

Chemical treatments such as HF etching (wet or anhydrous) are notorious for leaving an electrostatically active wafer surface which attracts particle and chemical contaminants. Such oxide removal or cleaning processes are usually followed by further processing to clean and passivate the wafer surface. Cleaning with supercritical CO₂ alleviates the electrostatic problem because the volume of fluid between the wafer and the cleaning chamber’s metal walls has been minimized. Also, the high pressure cleaning agent can include additives to passivate the surface.
Successful removal of organic contaminants, metal ions, and particles has been demonstrated on a DF 4000 module in our Class 100 cleanroom. For example, 98 to 99.5 percent of all particles > 0.3 μm have been removed from a wafer, using a process time under one minute. As this new technology continues to develop, further results will be forthcoming from customer beta sites.

The module typically would be used after the HF process and/or during the clean cycle. The system is ideally suited for single wafer, cluster-tool configurations where supercritical fluid cleaning can provide a contaminant-free, passivated surface between various processing steps.

Summary

Along with equipment design features, various fluid properties of sub- and supercritical CO₂ contribute to the workability of this new “dry cleaning” process (Table II). Initial work promises increased yield for densely patterned, large diameter, ULSI/VLSI wafers.

ONLY FOUR THIN FILM CONTROLLERS ARE GUARANTEED TO OUTPERFORM ALL OTHERS.

Only the Inficon family of thin film deposition controllers has “Modelock” (patent pending), a new measurement system that provides crystal frequency information at levels of precision unobtainable with the technology you’re using now. With Modelock it’s possible to greatly extend crystal life, get single measurement rate resolution of .005 Å, even at 16 times/sec, and achieve more precise rate control.

In fact, Modelock is such a dramatic improvement over conventional “active oscillator” controllers, we’re guaranteeing it. Choose the Inficon controller that’s right for your process. If it doesn’t outperform what you’re using now, send it back within 45 days for a full refund.

For more information call or write:

Leybold Inficon Inc.
Two Technology Place, E. Syracuse, NY 13057
(315) 434-1100 TFX (315) 437-3803

LEYBOLD INFICON

“Innovative Vacuum Technology

“See us at Semicon West ’92 Booth #716”

120 SOLID STATE TECHNOLOGY June 1992