

Ionic Liquids as Thermal Energy Storage Media for Solar Thermal Electric Power Systems

R. G. Reddy*+, ACIPCO Professor and Associate Director
* Department of Metallurgical and Materials Engineering B. Wu+, Research Engineer
R. D. Rogers+, Professor and Director
+ Center for Green Manufacturing (CGM)
The University of Alabama, Tuscaloosa, AL 35487
E-mail: rreddy@coe.eng.ua.edu

THE UNIVERSITY OF ALABAMA

- Introduction
 - Thermal energy storage (TES) media
 - Ionic liquids (IL)
- Experimental
 - Synthesis of IL
 - Characterization of IL
- Results and discussion
 - Properties
 - TES capacity of IL
- Optimization of IL
 - Effect of anions on melting point of IL
- Cost comparison of TES media
- Evaluation of IL
- Conclusions
- Acknowledgements

Solar Energy and Application

- Solar energy: Received on earth is about 5000 times greater than the sum of all other energy sources.
- Main application: Generate electricity.
- Problems: Solar energy availability depends on time, weather condition, and latitude, but electricity demand varies with time.
- Solution: Store the energy; originally from the solar radiation as thermal energy in storage fluid.

Thermal Energy Storage Media

- Molten salts: A mixture of NaNO₃, NaNO₂, and KNO₃.
 - Main problem: Melting point is about 142°C, resulting in freezing in the pipeline in the evening and causing high operation costs.
- Thermal oil: The organic oil such as Santotherm 55.
 - Main problem: Limited temperature range, usually below 300°C; Low density and low heat capacity require higher storage volume and higher construction costs.

Properties of Ionic Liquids

- Low melting-point solvents.
- High ionic concentration.
- Wide temperature range for liquid.
- Non-volatile and non-toxic solvents.
- ♦ Wide electrochemical windows, up to 4.0 Volts.

Types of Ionic Liquids

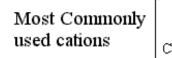
Formation of Ionic liquids:

imidazolium

[PF₆]⁻

Water - insoluble

 $[(CF_3SO_2)_2N]^-$

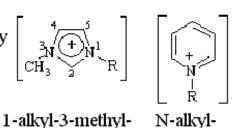

 $[BR_1R_2R_3R_4]^-$

ethyl

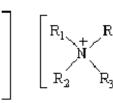
butyl

hexyl

e.g.: $C_4 mimCl + HPF_6 \Rightarrow C_4 mimPF_6 + HCl$



Some Possible

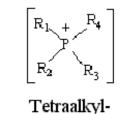

Most commonly

used alkyl chains

anions

pyridinum

 $[BF_{4}]^{-}$


octyl

decyl

[CF,SO,]-

Tetraalkyl-

ammonium

Tetraalkylphosphonium (R_{1,2,3,4} = alkyl)

Water	-	soluble

[CH₃CO₂]⁻ [CF₃CO₂]; [NO₃]⁻ Br, Cl, I⁻ [Al₂Cl₂]; [AlCl₂]⁻(decomp.)

Experimental

Synthesis of ionic liquids

• $C_{10}mimPF_6$, C_8mimPF_6 , C_4mimPF_6 , $C_{10}mimBF_4$, C_8mimBF_4 , C_4mimBF_4 , C_4mimBF_4 , C_4mimTf_2N , and $C_4mim-AlCI_4$

Characterization of the synthesized ionic liquids

- TGA, DSC, and NMR
- Measurement of the properties of ionic liquids
 - melting points, decomposition temperature, viscosity, and density

Some Properties of Ionic Liquids

Ionic liquid	Melting point,ºC	Decomposition point, °C	Viscosity at 25°C, mPa s	Density at 25°C, kg/m ³
[C ₁₀ mim][PF ₆]	34	390		
[C ₈ mim][PF ₆]	-75	416		1400
[C ₄ mim][PF ₆]	4	390	312	1370
[C ₁₀ mim][BF ₄]	-77.5			
[C ₄ mim][BF ₄]	-75	407	219	1119
$[C_4 mim][CF_3(SO_2)_2N^-]$	-89	402	54.2	1429

Properties of Heat Transfer Fluids

Commerc	cial name	Chemical composition	Liquid T, (°C)	Thermal conductivit y (W/m K)	C _p (kJ/kg K)	Viscosity (10 ⁻⁶ m²/s)	Volume expansion (10 ⁻⁴ K ⁻¹)	Specific gravity
Propylene glycol	Dowfrost (Dow) 59 wt% aq.soln.	Propylene glycol K ₂ HPO ₄ 1%	-31~102	0.39	3.6 at 27°C	3.0 at 38°C 70 at -18°C	7.3	1.033 at 27ºC
Ethylene glycol	Dowtherm SR-1 (Dow) 59 wt% aq.soln.	Ethylene glycol K ₂ HPO ₄ 2%	-37~110	0.42	3.4 at 27⁰C	2.6 at 100°C 61 at 38°C	6.3	1.074 at 20ºC
Polyglycols	UCON 500 (Union Carbide)	Polyglycol 90% inhibitor	-37~289	0.15	2.2 at 100°C	11.5 at 100°C 61 at 38°C	7.9	0.98 at 100°C
Paraffinic hydrocarbon oils	Caloria HT 43 (Exxon)	Petroleum distillate	-9.5~311	0.13	2.1 at 100°C	5.0 at 100°C 31 at 38°C	10.0	0.80 at 100°C
Synthetic Hydrocarbon oils	Brayco 888 HF (Bray Oil Co.)	Polymerized 1-decene	-85~227	0.13	2.3 at 25ºC	4.5 at 100°C 22.5 at 38°C	4.8	0.83 at 15ºC
Silicone oils	Syltherm 444 (Dow Corning)	Polydimethy- siloxane	-46~>315	0.14	1.6 at 100°C	7.0 at 100°C 20 at 25°C	10.7	0.95 At 25°C
water		H ₂ O	0~100	0.6	1.6 at 100°C	0.3 at 93°C	2.1	1.00 At 4ºC
Ionic Liquid		[C ₈ mim][PF ₆]	-75~416		2.5 at 25°C			1.4 at 25ºC

Properties of Molten Salt, Thermal Oil and Ionic Liquid

Properties at 25°C	molten salt 60%NaNO _{3,} 40%KNO ₃	Thermal oil Santotherm 55	
Density, kg/m ³		886.2	1400
Specific thermal capacity C _p , J/kg K		1907	2500
Temperature range for liquid, °C	220 to 600	-30 to 300	-75 to 416
Storage density, MJ/m ³		59	378
Thermal conductivity k, W/m K		0.1891	
Dynamic viscosity, µ, Pa s		0.0105	
Prandlt number, $Pr = Cp \mu/k$		160.5	

TES Capacity of Ionic Liquids

For C₈mimPF₆, the liquid temperature range is -75 to 416°C, heat capacity C_p=2500 J/kg K, and density ρ=1400 kg/m³. When T_{inlet} = 210°C and T_{outlet} = 390°C, the TES density (E) can be calculated as follows:

$$E = \rho C_{p} (T_{out} - T_{in})$$

= 1400 $\frac{kg}{m^{3}} \times 2500 \frac{J}{kg K} \times (663 - 483) K$
= 378 × 10⁶ $\frac{J}{m^{3}} = 378 \frac{MJ}{m^{3}}$

Optimization of Ionic Liquids

- Various anions and cations of ionic liquids were combined for optimized melting points and thermal stability.
- Different ionic liquids were mixed for optimized compositions which show a higher decomposition temperature than each individual ionic liquid.
 - E.g.: 50% $[C_4 mimBF_4]$ $(T_{dec} = 407^{\circ}C)$
 - + 50% [C_6 mimTf₂N] ($T_{dec} = 341^{\circ}C$)
 - \implies Ionic liquid mixture (T_{dec}= 427°C)

Effect of anions on IL melting point

Ionic liquid	Melting point, °C
[emim][NO ₃]	38
[emim][NO ₂]	55
[emim][MeCOO ⁻]	-45
[emim] ₂ [SO ₄]	70
[emim][PF ₆]	58-60
[emim][CF ₃ SO ₃ -]	-9
[emim][CF ₃ (CF ₂) ₃ SO ₃ ⁻]	28
[emim][(CF ₃ SO ₂) ₂ N ⁻]	-3
[emim][CF ₃ COO ⁻]	-14
[emim][F(HF) _n -]	-90

Cost Comparison of Thermal Energy Storage Media

Liquid Media	Media cost per kg, \$/kg	Media cost per kWh _t , \$/kWh _t
Mineral oil	0.30	4.2
Synthetic oil	3.0	43
Silicone oil	5.0	80
Nitrite salts	1.0	12
Nitrate salts	0.7	5.2
Carbonate salts	2.40	11
Liquid sodium	2.00	21
Ionic liquid	1.5 to 7	

Evaluation of IL

Novelty:

- Use of IL as TES media is new.
- Potential market:
 - Industrial solar thermal systems:
 - For a solar power plant of 10,000 kW, the tank volume is about 1,500 m³.
 - Assuming IL cost of \$1.5~7/L, the total cost of TES media will be 2.25 to 10.5 million.

Conclusions

- Ionic Liquids have excellent thermal properties for use as TES media and heat transfer media for solar thermal power plant system.
- ♦ For C₈mimPF₆ ionic liquid, the TES density is 378 MJ/m³ and liquid temperature range is −75 to 416°C.
- Low viscosity and high thermal conductivity make ionic liquids as excellent TES media candidates.
- Economic feasibility of ionic liquids as liquid TES media and heat transfer media needs further investigation.

Acknowledgements

- National Renewable Energy Laboratory (NREL), Department of Energy
- Department of Metallurgical and Materials Engineering, The University of Alabama
- ACIPCO