Melt Infiltrated (MI) SiC/SiC Composites for Gas Turbine Applications

Krishan L. Luthra GE Corporate Research & Development Schenectady, NY 12301 Talk Presented at DER Peer Review for Microturbine & Industrial Gas Turbines Programs* on March 14, 2002

Outline

- Introduction
 - CMC Opportunities
 - Team Members
- Applications & Payoff
- Material System
- Pathway to Commercialization
- Current Status & Future Plans
- Summary

CMC Opportunity

- CMC's represent a game changing technology
- DOE had the vision to start the CFCC program in early nineties

Collaboration

Team Members

Prime Contractor:

Component Fabrication:

GE Global Research Center

GE Global Research Center

GE Power Systems Composites (GEPSC), formerly Honeywell Advanced Composites, Inc. (HACI)

Goodrich Aerospace

GE Power Systems

ORNL (Microstructural) Argonne National Lab (NDE)

End User

CMC Characterization:

<u>Leverage from other programs</u>

CMC Material Development

Environmental Barrier Coating Component testing

HSCT (NASA); Air Force Programs at **GEAE** HSCT (NASA) CSGT (DOE) at Solar

Applications

• Stationary components represent the best short-term opportunity

Payoff & Selected Applications

- Higher temperature capability of CMCs allows reduction/elimination of air needed for cooling metallic components
 - Improvement in fuel efficiency
 - Reduction in harmful emissions
 - Higher output of machines
- Applicable to all classes of gas turbines
 - GE gas turbines range 45 KW to 280,000 KW
 - F-class & H-class machines most advanced
 - Installed base for F-class machines ~36 GW(US) & ~64 GW (worldwide) In 1999
- Initial focus on shrouds & combustor liners
 - Technology would flow to other stationary components, such as nozzles

DOE-CFCC And DOE – AMAIGT focused on CMC applications in F-class machines

Payoff For Stationary Components

- Up to 1.1% point increase in simple cycle efficiency
- Increase in 3% output
- Market growth of 6%/year and 20% market penetration by 2020
 - US annual savings of ~290 Billion BTU of energy, equivalent to ~0.29
 Billion cubic ft. of natural gas at a cost of ~\$960 Million (2001 dollars)
 - Annual savings of ~4.3 Million MTCE of CO_2 emissions
 - Annual savings of ~51,000 MT of NO_x emissions
 - Extra power generation worth ~1.3 Billion dollars, further reducing the cost of electricity to customers

Use of CMCs offers opportunity for enormous fuel savings, reduction in emissions and reduction in cost of electricity to customers

MI-CMCs

Fracture Surface

Hi Nicalon Reinforced M. I. Composites

Ceramic Matrix Composites - The path into Gas Turbine Engines

Shroud Rig Component Performance

Combustors

Shroud Rig Testing at 1500°C Gas Temperature

GE2 S2S and S1S Testing at GE Oil & Gas

Engine Testing of Prepreg Processed Shrouds Has Been Very Successful to Date

Outline

- Introduction
 - CMC Opportunities
 - Team Members
- Applications & Payoff
- Material System
- Pathway to Commercialization
- Current Status & Future Plans
- Summary

Status & Past Year Accomplishments

- Unique high pressure-high velocity rig designed and being used for long-۲ term testing.
 - Needed to evaluate water vapor & velocity effects on CMC materials.
- Shroud system design completed. ullet
 - Critical design features, such as attachment and blade rub tolerance, were evaluated with sub-component tests.
- Over 30 CMC inner shrouds fabricated for rig and engine testing. ullet
 - EBC deposition process scaled up and CMC shroud coating optimized.
 - Transient IR thermography demonstrated as useful NDE technique for CMC shroud inspection.
- A new combustion rig for testing of shroud system was designed, ۲ assembled, and its operation verified.
 - Used as short-term validation of shroud system design before proceeding to engine tests
 - ~ 200 hours of rig testing completed on two shroud system variations.

Long-Term Rig Testing

- High pressure high velocity rig
 - **Evaluate effects of water** vapor and velocity
- Capabilities
 - Temperature up to 1200°C⁺
 - Velocity of 450 ft/sec⁺
 - 9 atmospheric pressure
 - 1 atmosphere of water vapor
 - Up to 28 tensile test specimens
- Status
 - ~3000 hours of testing performed
 - Another 2500 hours planned this year
 - Facilities would also be used for microturbine program

Unique material testing facility being used for long-term life testing under turbinelike conditions

Blade Tip Rub Tolerance Validation

- Rub tests of prepreg and slurry cast samples, with and without EBC, were done at RT and 1200C
 - GTD-111 blades lost mass and substrate gained mass in all tests - indicates wear of blade and deposition of metal onto CMC samples
 - No spalling of EBC coating or substantial damage to CMC observed

Apparatus ub tip Sample TC Specimen assembly Uncoated Prepreg RT EBC coated Prepreg 1200C

CMC/EBC system very resistant to blade tip rubs

17

EBC Process Scale-Up and Optimization

 Process successfully scaled up to coat shroud components

 Quality and thickness control of EBC verified with shroud cut-ups

NDE by Transient IR Thermography

"Bad" Shroud

"Good" Shroud

NDE of CMC Shrouds Demonstrated

NDE indications verified as defects by microstructural characterization

Shroud Test Rig

Surrogate metal shrouds

Cast ceramic lower wall (replaced with CMC for durability)

- Shrouds
 - Engine test (4000 hours+) at a customer site starting from Fall '02 outage
- Combustor Liner
 - Combustor preliminary design completed CY 3Q02
 - Fabrication of MI-CMC combustor by CY 4Q02
 - Rig testing of combustor system starting CY 1Q03
 - Fabrication of final design and validation rig test by CY 1Q04
 - Field engine test starting CY 4Q04

Summary

- CMCs represent a game changing technology for industrial gas turbines
 - 400° F improvement over metals
- CMCs offer opportunities for enormous fuel savings, reduction in ۲ emissions, and reduction in cost of electricity to customers
- DOE's CMC programs (CFCC & AMAIGT) have taken the lead in CMC material development for their applications in gas turbines
- GE's efforts on CFCC & AMAIGT focused on shroud & combustor liners
 - Field test of first stage shroud in an F-class machine (~150 MW) planned in 2002 at a customer site
 - Combustor liner testing to follow at a customer site in 2004 —

GE working with DOE in a risk-reducing, step-wise approach for developing CMCs for Industrial Gas Turbines

