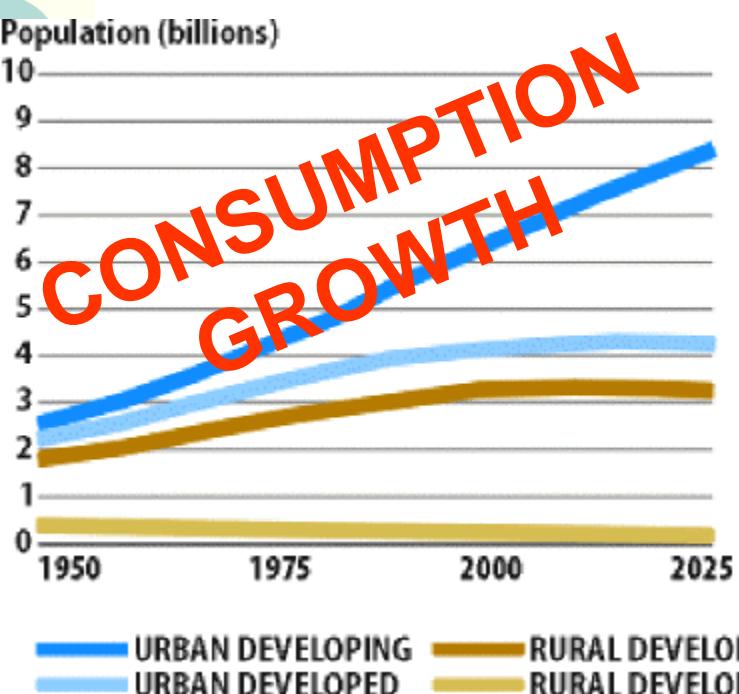
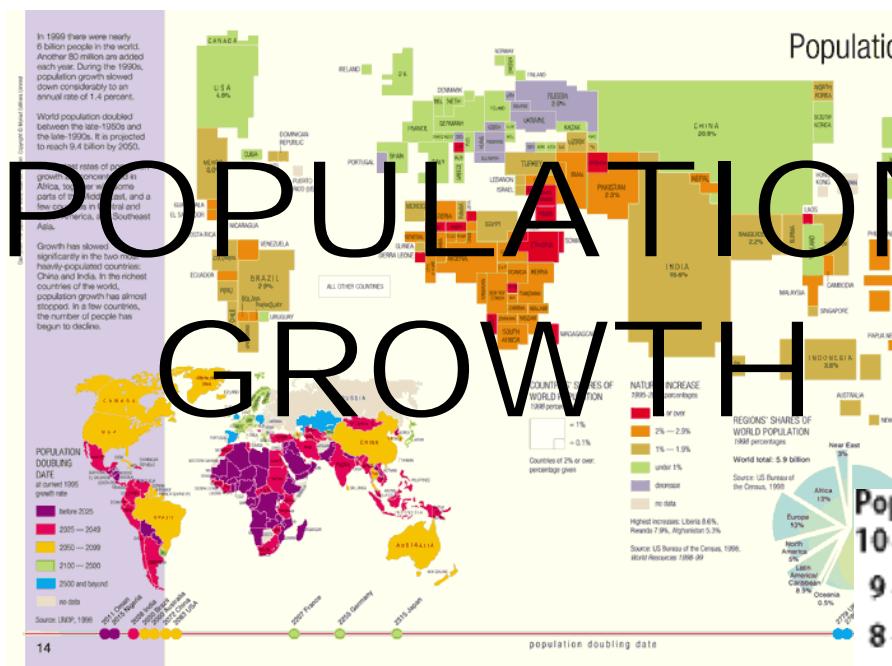


The Problem and the Need for Converting Environmental Impacts to Monetary Value

Maria Anityasari, Suphunnika Manmek,
Prof. Hartmut Kaebernick

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering



www.lceresearch.unsw.edu.au

Life Cycle Engineering & Management Research Group at UNSW

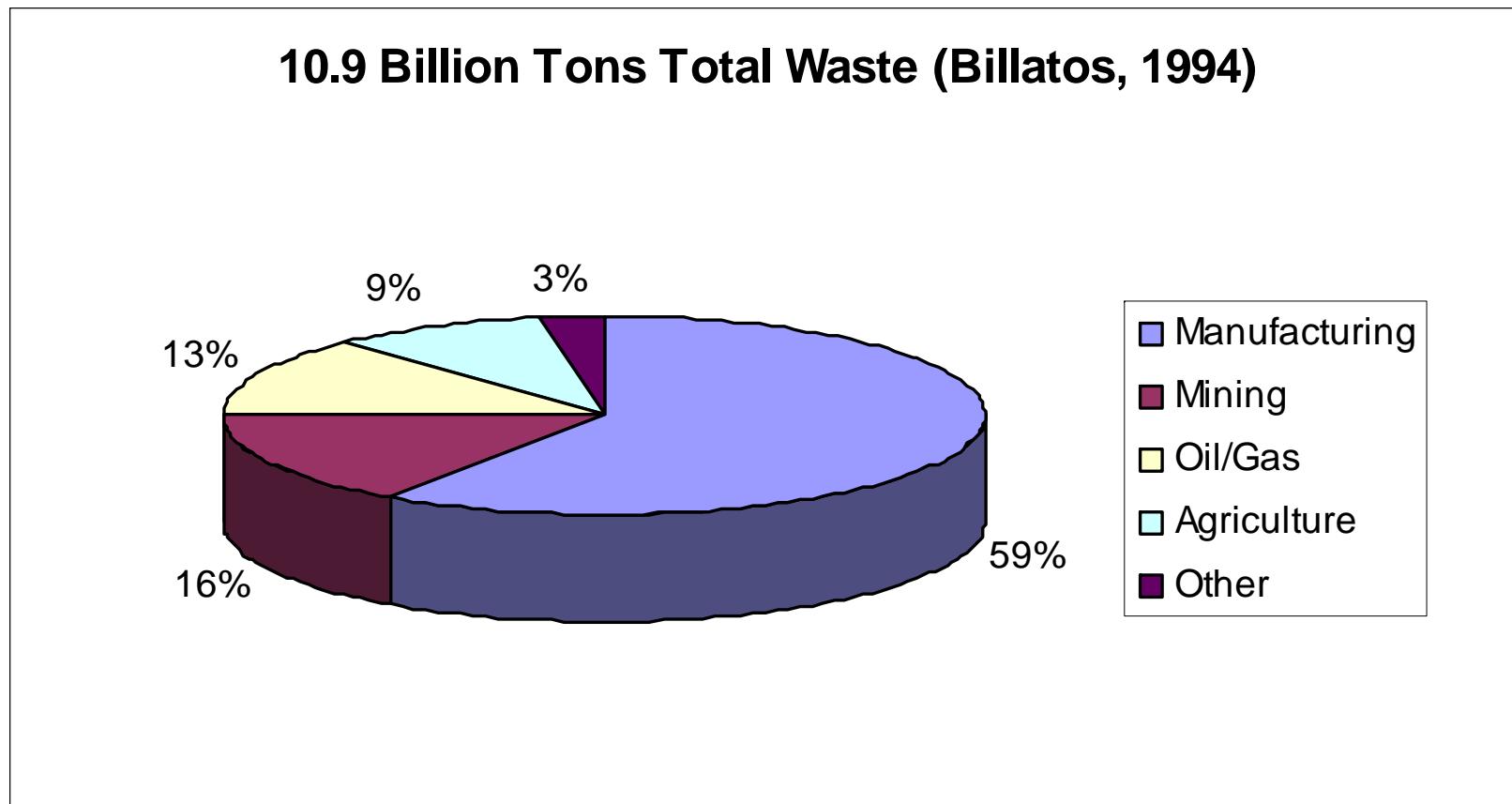
- Established in 1998 by Prof. Hartmurt Kaebernick
- 3 main researchers, 8 PhD students, 8 Master & BE students, 2 visiting researchers, hosted more than 5 exchange students
- Research areas including:
 - Life time monitoring of appliances
 - Critical design parameters for condition monitoring
 - Reverse logistics
 - Sustainable product & process development
 - Disassembly planning
 - Environmental assessment of industrial products
 - Reuse of industrial products

DEPLETION OF NATURAL RESOURCES

SCARCITY OF LANDFILL

POLLUTION &
WASTE PROBLEMS

Life Cycle Engineering & Management
Research Group @ UNSW



School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

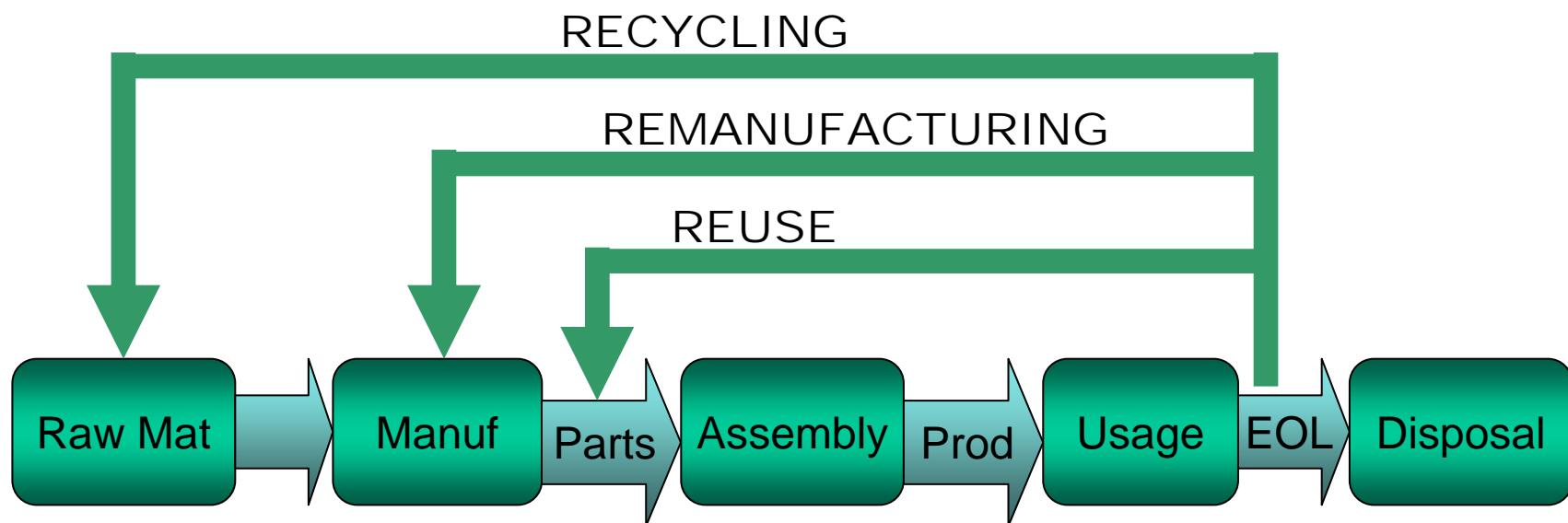
Manufacturing Contribution

Waste from Production Processes

&

PRODUCTS AT THEIR
END OF LIFE !!!

Life Cycle Engineering & Management
Research Group @ UNSW



School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

OPEN ~~LOOP~~ SYSTEM

CLOSED LOOP SYSTEM

Reuse is the best strategy.... ?

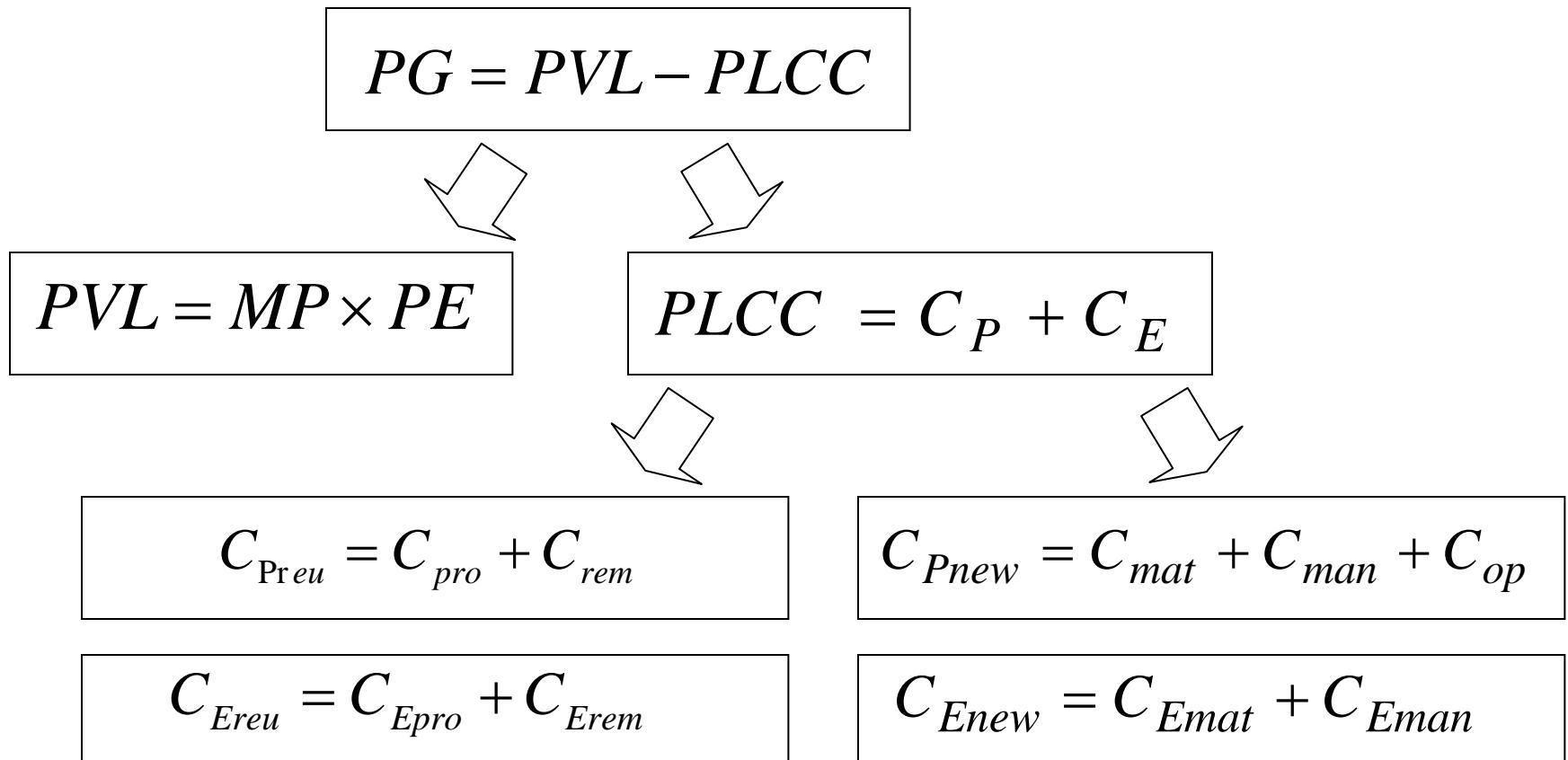
Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

Challenges for Reuse

- Quality and Reliability of Reused Products
- Procurement (Take Back & Logistics)
- Economic Feasibility
- Environmental Impacts



The lifecycle of reuse parts including collection, sorting, cleaning, and remanufacturing activities also produce environmental impacts that may lead to **WORSE** environmental performance overall

The Evaluation Model - PG4REUSE

Definition of parameters

- **Product Gain (PG)** - the monetary outcome from the sales of the product after deducting product life cycle cost
- **Product Value (PVL)** – the technical performance or quality status of the product
- **Product Effectiveness (PE)** – how effectively the product performs its intended function and meets customer requirements
- **Product Life Cycle Cost (PLCC)** – all costs that occur during the product's life cycle phases

The Need for Converting Environmental Impacts into Monetary Value

- To incorporate environmental performance with other parameters in decision making model
- To ease the communication among parties
- To increase the acknowledgement of environmental aspects in the current society including government bodies, industries, and the community

Environmental Cost will be...

- Part of Product Life Cycle Cost (PLCC)
- Addressing all impacts during product life cycle
- Including Internal and External Costs

Internal Cost

- ISO14000 series
 - Life Cycle Costing

External Cost or Social cost

- Economic Environmental Valuation Methods
 - Evaluate the environmental impacts which are the public goods into monetary value

**The impact assessment methods which
are currently incorporating the external
cost.....**

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering —

www.lceresearch.unsw.edu.au —

- **Environmental Priority Strategies in product design version 2000 - the default method (EPS2000)**

Developed by CPM (Centre for the environmental assessment of Products and Material systems) – a joint research environment at Chalmers University of Technology (Sweden) with participation from industries

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

- **LIME: Life-Cycle Impact Assessment Method based on Endpoint Modelling**

By AIST, JEMAI, Japanese Government organizations

The method is announced in 2003

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

- **TCAceTM, Total Cost Assessment software**

by Greg Norris, A commercial software from Sylvatica company

Tools for Integrating Life Cycle Cost Analysis with Life Cycle Assessment

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

Overview of the environmental valuation methods

EPS2000 (Units: ELU)	TCA (Units: US\$)	LIME (Units: Yen)
<ul style="list-style-type: none">- Using life cycle inventory analysis- Using factor which are from WTP for human health, world market price for ecosystem and production cost for resources depletion- Environmental Load Units (ELU) equals to EUR	<ul style="list-style-type: none">- Identify the potential risks of a particular environmental impact category- Evaluate the external costs through an external cost literature (site specific)	<p>The Japanese version modified Eco-Indicator 99 and converted to Yen currency.</p> <p>(Not many English publication available for the external costs background)</p>

Overview of the environmental valuation methods

Impact categories

EPS2000	TCA	LIME
<ul style="list-style-type: none">- Life expectancy (ELU/YOLL)- Severe morbidity (EUR/PrYr)- Morbidity (ELU/PrYr)- Severe Nuisance (ELU/PrYr)- Nuisance (ELU/PrYr) - Crop & wood growth capacity- Fish & Meat production- Soil acidification: Liming cost (EUR/moleH+) & EUR/ton- Prod. Cap. Irrigation/Drinking water: WTP & Production costs (ELU/kg) - Depletion of resources- Species extinction	<ul style="list-style-type: none">- Pollutant Discharges to air- Pollutant Discharges to surface water- Pollutant Discharges to ground water/deep well- Pollutant Discharges to Land- Natural habitat impacts: local community, wetlands, wildlife reserves- Value chain impacts- Product health impacts	<ul style="list-style-type: none">- Urban air pollution- Human toxicity- Ecotoxicity- Ozone layer depletion- Climate change- Acidification- Eutrophication- Photochemical ozone creation- Resource consumption- Land use

The Problems

- Available methods and converters are applicable for particular areas
- Different methods have different damage categories
- Many uncertainties involve in such evaluation
- A simplified method that can be applied at the early stage of design phase is needed

Future Works

- To collect and compile (or combine if possible) more methods and converters
- To investigate the use of simulation for addressing uncertainties
- To implement the evaluation model to evaluate the reusability of wide range of industrial products

Thank you for your attention...

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

Life Cycle Engineering & Management
Research Group @ UNSW

School of Mechanical & Manufacturing Engineering

www.lceresearch.unsw.edu.au

Example of the other converter currently available

- Amelia L. Craighill, Jane C. Powell , 1996, Lifecycle assessment and economic evaluation of recycling: case study Resources, Conservation and Recycling, Vol. 17, pp. 75-96.

Table 2
Economic parameter values for external costs

Emission	(Pence/kg)	Road casualties	(£/casualty)	
CO ₂	0.40	Mortality	744 060	
CO	0.60	Serious injury	84 260	
CH ₄	7.20	Minor injury	6540	
SO ₂	258.40	Road congestion	(pence/PCUkm)	/HGVUkm)
NO _x	127.00	Motorway	0.26	0.52
N ₂ O	61.40	Non central	12.30	24.60
PM10 ^a	898.00	Rural	0.07	0.14

Sources: CO₂, CO, CH₄ and N₂O: Fankhauser [37]; SO₂, PM10 and NO_x: Commission for the European Communities [38]; Road casualties: Department of Transport [39]; Road congestion: Newbery [33].

^aParticulates of less than 10 μm diameter.

