"Perfect" Combustion:
FUEL (hydrocarbons) + AIR (oxygen and nitrogen) ==>>
CARBON DIOXIDE + water + unaffected nitrogen
Typical Engine Combustion:
FUEL + AIR ==>> UNBURNED HYDROCARBONS + NITROGEN OXIDES
+ CARBON MONOXIDE + CARBON DIOXIDE + water
HYDROCARBONS Hydrocarbon emissions result when fuel molecules in the engine do not burn or burn only partially. Hydrocarbons react in the presence of nitrogen oxides and sunlight to form ground-level ozone, a major component of smog. Ozone irritates the eyes, damages the lungs, and aggravates respiratory problems. It is our most widespread and intractable urban air pollution problem. A number of exhaust hydrocarbons are also toxic, with the potential to cause cancer.
DIURNAL: Gasoline evaporation increases as the temperature rises during the day, heating the fuel tank and venting gasoline vapors.
RUNNING LOSSES: The hot engine and exhaust system can vaporize gasoline when the car is running.
HOT SOAK: The engine remains hot for a period of time after the car is turned off, and gasoline evaporation continues when the car is parked.
REFUELING: Gasoline vapors are always present in fuel tanks. These vapors are forced out when the tank is filled with liquid fuel.
EPA standards dictate how much pollution autos may emit but automakers decide how to achieve the pollution limits. The emission reductions of the 1970's came about because of fundamental improvements in engine design, plus the addition of charcoal canisters to collect hydrocarbon vapors and exhaust gas recirculation valves to reduce nitrogen oxides.
The advent of "first generation" catalytic converters in 1975 significantly reduced hydrocarbon and carbon monoxide emissions. The use of converters provided a huge indirect benefit as well. Because lead inactivates the catalyst, 1975 saw the widespread introduction of unleaded gasoline. This resulted in dramatic reductions in ambient lead levels and alleviated many serious environmental and human health concerns associated with lead pollution.
The next major milestone in vehicle emission control technology came in 1980-81. In response to tighter standards, manufacturers equipped new cars with even more sophisticated emission control systems. These systems generally include a "three-way" catalyst (which converts carbon monoxide and hydrocarbons to carbon dioxide and water, and also helps reduce nitrogen oxides to elemental nitrogen and oxygen), plus an on-board computer and oxygen sensor. This equipment helps optimize the efficiency of the catalytic converter.
Vehicle emissions are being further reduced by provisions of the 1990 Clean Air Act. Mobile source provisions include even tighter tailpipe standards, increased durability, improved control of evaporative emissions, and computerized diagnostic systems that identify malfunctioning emission controls.
The net result is a modest reduction in each automotive pollutant except lead, for which aggregate emissions have dropped by more than 95 percent.
With ozone continuing to present a persistent urban air pollution problem, future vehicle emission control programs will emphasize hydrocarbon and nitrogen oxide reductions. Carbon monoxide control will remain critical in many cities, and limits on vehicle-generated carbon dioxide may become important in the future.
The Office of Mobile Sources is the national center for research and policy on air pollution from highway and off-highway motor vehicles and equipment. You can write to us at the EPA National Vehicle and Fuel Emissions Laboratory, 2565 Plymouth Road, Ann Arbor, MI 48105. Our phone number is (734) 214-4333.
last update: 20 July 1998