MERCURY USE:
NURSING HOMES

Where Is Mercury Found in a Nursing Home?

Patient Areas
✔ Blood pressure monitors (sphygmomanometers)
✔ Thermometers or thermostat

Medicines
Many of the medicinal uses of mercury have been discontinued. However, mercury still appears in thimerosal that is present in eye drops, nasal sprays, etc. See chart below for more information.

Storage Rooms or Maintenance Areas
✔ Old, damaged, or outdated equipment
✔ Rooms where blood pressure monitors are stored and calibrated

Sewer Pipes
Mercury was used extensively in medical settings in the past. Often times mercury may have found its way into the pipes of a nursing home when items were broken, disposed of, or spilled. This mercury can settle at a low point such as a sump or trap and remain in the pipes of a nursing home for many years. Often the slow dissolution of the mercury in a sump, trap, or pipe is enough to cause violations of wastewater discharge standards even after poor management practices have been eliminated. Hot spots in a nursing home’s piping may appear where equipment maintenance areas were located. Whenever traps or sumps are moved or cleaned, the solid contents should be treated as a hazardous waste unless proven otherwise. For more information, please see the excerpts from the MWRA/MASCO Infrastructure Subcommittee Maintenance Guidebook that appear in the “Resources” section of this sourcebook.

Table of Contents
Where is Mercury Found in a Nursing Home? .. 531
Common Items Containing Mercury ... 531
About This Handout ... 532
Why Should I Be Concerned About Mercury? .. 533
Keeping Mercury Out of Wastewater .. 535
Keeping Mercury Out of Medical Waste Incinerators 535
Mercury Product Focus: Batteries ... 536
Case Study: Battery Substitution .. 538
Mercury Product Focus: Detergents & Cleaners .. 539
Mercury Product Focus: Gauges - Manometers, Barometers, and Vacuum Gauges ... 540
Mercury Product Focus: Lamps .. 540
Medical/Pharmaceutical Use of Mercury - Human Contact 542
Mercury Product Focus: Switches .. 543
Mercury Switches in Electrical Applications .. 544
Mercury Product Focus: Thermostat Probes .. 545
Mercury Product Focus: Thermometers ... 545
Mercury Spills ... 546
Action Ideas for Nursing Homes to Consider .. 547
Sample Proclamation .. 549
Bibliography .. 551
Attachment
Mercury Pollution Prevention at a Bleached Kraft Pulp & Paper Mill

Common Items Containing Mercury
✔ Batteries
✔ Cleaning solutions
✔ Fluorescent lamps
✔ Generators
✔ High intensity lamps
✔ Manometers
✔ Switches
✔ Thermostats
ABOUT THIS HANDOUT

This is one chapter of the “Wisconsin Mercury SourceBook.” The Sourcebook was written as a guide for communities to help identify and reduce the purposeful use of mercury. The SourceBook contains background information on mercury contamination and provides a seven-step outline for drafting a mercury reduction plan.

This handout is one of the nineteen sectors that were highlighted in the SourceBook as a potential contributor of mercury in any given community.

What you will find in this handout:

★ Information on mercury-containing products and that are unique to nursing homes

★ Information on mercury-containing products that are found both in nursing homes and in a wide variety of other sectors (e.g., fluorescent lamps, switches)

★ Action ideas that describe pollution prevention, recycling, and management practices for a mercury reduction plan for a nursing home. This provides a good overview of the types of mercury-containing products and alternatives that may exist in nursing homes.

★ A sample proclamation that explains the mercury issue and possible mercury minimization options for nursing homes

★ Current mercury projects in this sector

For more information, please contact:
WHY SHOULD I BE CONCERNED ABOUT MERCURY?

Some of you may remember playing with mercury when you were a child. Its silvery white shimmer was entrancing, and the ability of its glistening mass to split and come back together again was magical. But scientists are now beginning to realize that there is another side to mercury’s wily nature. In fact, it is some of mercury’s most elemental qualities that make it a difficult substance to handle.

Mercury is a common element that is found naturally in a free state or mixed in ores. It may also be present in rocks or released during volcanic activity. However, most of the mercury that enters the environment in Wisconsin comes from human uses.

Because mercury is very dense, expands and contracts evenly with temperature changes, and has high electrical conductivity, it has been used in thousands of industrial, agricultural, medical, and household applications.

It is estimated that half of the anthropogenic mercury releases in Wisconsin are the result of the purposeful use of mercury. The other half of mercury emissions originate from energy production.

Major uses of mercury include dental amalgams, tilt switches, thermometers, lamps, pigments, batteries, reagents, and barometers. When these products are thrown in the trash or flushed down a drain, the mercury doesn’t go away.

The good news is that the majority of products that use mercury purposefully have acceptable alternatives. For example, electric vacuum gages, expansion or aneroid monitors are good alternatives to mercury blood pressure monitors. Mechanical switches, magnetic dry reed switches, and optic sensors can replace mercury tilt switches.

Replacing mercury-laden products with less toxic alternatives is referred to as source reduction. Source reduction allows us to eliminate the use of mercury in certain waste streams. This is especially beneficial considering the volatile nature of mercury, because mercury can so easily transfer from air to soil to water.

Practicing source reduction in combination with recycling the mercury already in the waste stream can have a significant impact on reducing mercury levels in the environment.

HEALTH EFFECTS OF ELEMENTAL MERCURY

The toxicity of mercury has long been known to humans. Hat makers during the 19th century developed symptoms of shaking and slurring of speech from exposure to large amounts of inorganic mercury, which was used to give a metallic sheen to felt hats. This gave rise to the term “mad as a hatter.”

The hat makers were suffering from neurological damage from the inhalation of mercury fumes. Exposure to elemental mercury vapors can cause acute respiratory problems, which are followed by neurologic disturbances and general systemic effects. Acute exposure to inorganic mercury by ingestion may also cause gastrointestinal disturbances and may effect the kidneys.

SO WHAT’S THE BIG DEAL?

Mercury is a bioaccumulative, persistent, toxic substance that threatens the health of humans and wildlife throughout North America. The USEPA, Environment Canada, the International Joint Commission, the Commission for Environmental Cooperation and many state and provincial governments have identified mercury as one of the most critical pollutants for significant elimination and/or reduction.
Mercury can enter the environment from a number of paths. For example, if a mercury-containing item is thrown into the garbage, the mercury may be released into the atmosphere from landfill vapors or leachate, or the mercury may vaporize if the trash is incinerated. If mercury is flushed through a wastewater system, the mercury will likely adhere to the wastewater sludge, where it has the potential to volatilize and be deposited elsewhere. Mercury can enter the atmosphere through these various means because it evaporates easily. It then travels through the atmosphere in a vaporized state.

Once mercury is deposited into lakes and streams, bacteria convert some of the mercury into an organic form called methylmercury. This is the form of mercury that humans and other animals ingest when they eat some types of fish. Methylmercury is particularly dangerous because it bioaccumulates in the environment. Bioaccumulation occurs when the methylmercury in fish tissue concentrates as larger fish eat smaller fish. A 22-inch Northern Pike weighing two pounds can have a mercury concentration as much as 225,000 times as high as the surrounding water.

These concentrations are significant when one considers the potential toxic effects of methylmercury. Methylmercury interferes with the nervous system of the human body and can result in a decreased ability to walk, talk, see, and hear. In extreme examples, high levels of methylmercury consumption has resulted in coma or death.

Many animals that eat fish also accumulate methylmercury. Mink, otters, and loons in Wisconsin have been found to have high levels of mercury in their tissue. Mercury can interfere with an animal’s ability to reproduce, and lead to weight loss, or early death.

Fish Consumption Advisories

There are currently 260 lakes and more than 350 miles of rivers in Wisconsin that have fish consumption advisories because of mercury. Approximately 1 out every 3 sites that is tested is listed on the advisory; no sites have ever been removed. Forty-eight states now issue fish consumption advisories to protect human health. Most of these warnings are related to mercury contamination.
Keeping Mercury out of Wastewater

There are a number of ways mercury can enter the wastewater stream of a nursing home. When a mercury-containing product such as a thermometer is broken over a sink or improperly cleaned up after a spill, the mercury could get flushed down the drain. Mercury may also be present in a nursing home’s sewer pipes and traps from historical use of mercury.

Once mercury enters a wastewater treatment plant, most of it concentrates in wastewater biosolids during treatment. Since most treatment plants dispose of generated solids by land spreading, mercury enters the terrestrial environment by this process. Some of this mercury spread on land may, over time, be volatilized to the atmosphere. This mercury may then be deposited into lakes and streams, methylated, and ingested by fish, eventually reaching wildlife and humans.

To prevent such occurrences, it is important to have effective spill response measures. Instruments containing mercury should be labeled and proper procedures should be followed when cleaning or refilling instruments that contain mercury. Instrument cleaning or refilling should take place in a well ventilated area, and, if possible, over a tray to contain any spills.

Keeping Mercury out of Medical Waste Incinerators

There are approximately 5,000 Medical Waste Incinerators (MWIs) distributed evenly throughout the United States. About 3,000 of these are hospital incinerators, 150 are commercial units, and the rest are distributed among veterinary facilities, nursing homes, laboratories, and other facilities. Approximately 3,700 incinerators burn general medical waste and 1,300 burn pathological waste. In Wisconsin, we have 14 medical incinerators.

MWIs are a large source of mercury to the environment. There is up to 50 times more mercury in medical waste than in general municipal waste, and the amount of mercury emitted from general medical incinerators averages more then 60 times that from pathological incinerators. In Wisconsin, MWIs are responsible for approximately 25 percent of emissions in Wisconsin that are associated with the purposeful use of mercury.

Mercury is a very volatile metal that evaporates easily. When a mercury-containing product finds its way into a medical waste red bag and is incinerated, the mercury becomes gaseous and exits through smokestacks into the air. The mercury then settles on land and in water where it can be changed into its organic form, methylmercury. Fish bioconcentrate the mercury to such levels that it can harm wildlife and can be a potential human health risk. It is very important to educate nursing home employees about the dangers of putting mercury-containing items in the red waste bags to prevent this contamination.
Mercury Product Focus: Batteries

✔ Mercuric Oxide Batteries

Prior to the 1980s, most primary batteries and some storage batteries contained mercury in the form of mercuric oxide (HgO), zinc amalgam (Zn-Hg), mercuric chloride (HgCl₂), or mercurous chloride (Hg₂Cl₂). Although the amount of mercury used in each of these batteries was very small, the number of batteries sold in the US was enough to make alkaline batteries the largest component of mercury in the solid waste stream in 1989.

Great pollution prevention progress has been made in this field. In the last decade, the US battery industry has achieved a 99 percent reduction in their use of mercury! The use of alternative materials and different manufacturing techniques have eliminated the use of mercury in almost all battery applications.

Mercury does exist in mercury zinc, carbon zinc, silver oxide, and zinc air batteries. The amount of mercury discarded in mercury zinc batteries is expected to decline in the future as the use of silver oxide and zinc air batteries increases. The use of mercury in zinc air and silver oxide batteries is expected to be discontinued.

Today, mercuric oxide batteries are the only batteries that use mercury to any measurable degree. There are two basic types of mercuric oxide batteries: button cell and larger sizes. The button cell batteries are the types that are most often sold for personal use; they are used in hearing aids, watches, and other items requiring a small battery.

Mercuric oxide batteries offer a reliable and constant rate of discharge. Therefore, the larger mercuric oxide batteries (which look like 9-volt or fat AA batteries) are often used in military, hospital, or industrial uses. The mercury content in these mercury oxide batteries total 33 to 50 percent mercury by weight of the battery.

1993 Wisconsin Act 74

The 1993 Wisconsin Act 74 prohibits the sale in Wisconsin of any alkaline manganese battery manufactured after January 1, 1996, unless the manufacturer can prove that the alkaline manganese battery contains no intentionally introduced mercury. Alkaline manganese button cells can only be sold if they contain no more that 25 mg of mercury.

Zinc Carbon batteries manufactured after July 1, 1994 for sale in Wisconsin must contain no intentionally introduced mercury. Beginning July 1, 1994 mercuric oxide batteries, except button cells, may not be sold in Wisconsin unless the manufacturer identifies a collection site that meets prescribed standards, informs each purchaser of the collection site and a telephone number to call for information on recycling batteries, and informs the Department of Agriculture, Trade, and Consumer Protection and DNR of this collection site. The law also states that only a certified collection site may treat, store, or dispose of mercuric oxide batteries, and they must be recycled if possible.
Batteries and Mercury Content

<table>
<thead>
<tr>
<th>Type of Battery</th>
<th>Example of Use</th>
<th>Mercury Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylindrical or rectangular cells; the most commonly recognized battery. Labeled “alkaline.”</td>
<td>Flashlight, radios, toys, calculators, remote controls, electronic games, portable radios and televisions, garage door openers.</td>
<td>Previously contained an average of 0.5 percent mercury to control the zinc reaction. 1993 Wisconsin Act 74 mandates that all alkaline manganese batteries sold in Wisconsin after January 1, 1996 be mercury free. Alkaline manganese button cell batteries to contain no more than 25 milligrams of mercury.</td>
</tr>
<tr>
<td>Zinc Carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylindrical or rectangular cells; labeled as “General Purpose”, “Heavy Duty”, or “Classic”</td>
<td>Best used in slow drain applications like clocks, garage door openers, pagers, and smoke detectors. Have much shorter life span than Alkaline batteries.</td>
<td>Use of mercury in these batteries is being phased out. 1993 Wisconsin Act 74 mandates that all zinc carbon batteries for sale after July 1, 1994 be mercury free.</td>
</tr>
<tr>
<td>Silver Oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button shaped with no distinguishing marks</td>
<td>Watches, calculators, toys, greeting cards, musical books</td>
<td>Contain about one percent mercury by weight. Mercury use in these batteries is expected to be discontinued.</td>
</tr>
<tr>
<td>Zinc Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usually button shaped. Identify by pin hole on one side</td>
<td>Hearing aids</td>
<td>Contain about one percent mercury by weight. Mercury use in these batteries is expected to be discontinued.</td>
</tr>
<tr>
<td>Mercury Zinc (Mercuric Oxide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Button shaped, marked with +; larger mercuric oxide batteries look like 9-volt or fat AA batteries</td>
<td>Hearing aids, watches, and other items requiring a small battery. In consumer applications, mercuric oxide batteries are being replaced by zinc-air button cells. The larger mercuric oxide batteries are often used in military, hospital, or industrial uses.</td>
<td>Contain significant amounts of mercury; total 33 to 50 percent by weight of the battery. Wisconsin Act 74, requires a collection system for those selling mercuric oxide batteries, and requires the recycling of mercuric oxide batteries unless no reasonable alternative exists.</td>
</tr>
</tbody>
</table>
Case Study: Battery Substitution

Broward county, Florida, used a source substitution program to divert nearly 1 ton of mercury per year in medical batteries from incinerators or landfills. To implement the change from mercury battery use, the county surveyed the types, uses, and quantities of medical mercury batteries in use at county hospitals. It was found that individual hospitals were using from 100 to 16,000 batteries per year, which were disposed of in regular or biohazardous waste containers.

County staff explained to area hospitals the problems with and options for battery disposal. Hospitals gladly changed battery use and waste management procedures when staff were educated about the mercury content of batteries and alternatives to mercury battery use. The preferred course of action was a change from mercury batteries to zinc air batteries.

While zinc air batteries are more expensive, they also last longer. One disadvantage of the zinc air battery is that it continues to discharge when not in use, potentially elevating the cost of the batteries over the long run. However, hospital monitors are usually in constant use anyway, so this was not considered a significant factor.

Taking into account the higher cost of alternative batteries and the avoided costs of managing mercury waste, most hospitals achieved net savings by the switch to zinc air batteries. One hospital was even able to purchase alternative batteries at a cost equal to that for mercury batteries.

- from “Mercury in Medical Waste: No. 3: Use of Alternative Products,” EPA

More than 63,000 8.4 volt mercury batteries entered Broward county’s waste stream each year from hospitals alone. Each battery weighs about 1.8 ounces, nearly 0.5 ounces of which is mercury. That amounts to 1,800 pounds - nearly one ton of mercury. Area hospitals were able to divert this mercury through a source substitution and recycling program - and they saved money in the process!
Mercury Product Focus: Detergents & Cleaners

The Massachusetts Water Resources Authority (MWRA), in conjunction with MASCO (a consortium of Longwood Medical and Academic Area Institutions), has been working with their area hospitals and academic institutions to identify and address the problem of mercury contamination in hospital and medical waste streams. As part of this process, the MWRA group also worked to identify “other sources” of mercury contaminants. These are common products, such as bleach, alcohol, laboratory lids, not otherwise thought to be of significant importance or concern, that might contain low levels of mercury. Thus far, a total of 118 products has been identified by this team.

<table>
<thead>
<tr>
<th>Product</th>
<th>Mercury Content (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajax Powder</td>
<td>0.17</td>
</tr>
<tr>
<td>Comet Cleaner</td>
<td>0.15</td>
</tr>
<tr>
<td>Lysol Direct</td>
<td><0.011</td>
</tr>
<tr>
<td>Soft Scrub</td>
<td><0.013</td>
</tr>
<tr>
<td>Kodak Fixer</td>
<td>6.9; 3.7</td>
</tr>
<tr>
<td>Kodak Developer</td>
<td>2.65; 6.0</td>
</tr>
<tr>
<td>Alconox Soap</td>
<td>0.004 mg/ kg</td>
</tr>
<tr>
<td></td>
<td>0.005 mg/ kg</td>
</tr>
<tr>
<td></td>
<td><0.0025 mg/ kg</td>
</tr>
<tr>
<td>Derma Scrub</td>
<td><5.0</td>
</tr>
<tr>
<td></td>
<td><2.5</td>
</tr>
<tr>
<td>Dove Soap</td>
<td>0.0027</td>
</tr>
<tr>
<td>Ivory Dishwashing Liquid</td>
<td>0.061</td>
</tr>
<tr>
<td>Joy Dishwashing Liquid</td>
<td><0.01</td>
</tr>
<tr>
<td>Murphy’s Oil Soap</td>
<td><0.012</td>
</tr>
<tr>
<td>Soft Cide Soap (Baxter)</td>
<td>8.1</td>
</tr>
<tr>
<td>Sparkleen Detergent</td>
<td>0.0086</td>
</tr>
<tr>
<td>Sunlight Dishwashing Detergent</td>
<td><0.011</td>
</tr>
</tbody>
</table>
Mercury Product Focus: Gauges - Manometers, Barometers, and Vacuum Gauges

(Information from blue waste connection pamphlet)

Nursing homes may encounter liquid mercury in the gauges found in manometers or vacuum gauges. The mercury in these gauges responds to air pressure in a precise way that can be calibrated on a scale. Mercury-free alternatives to these gauges operate on the same principle as these gauges but use mercury-free liquids in the tube.

Needle or bourdon gauges operate under a vacuum with a needle indicator. Electronic gauges can be used to measure pressure, but they must be calibrated with a mercury manometer. Equipment manufacturers recommend that service technicians use a needle or digital gauge to test the systems they are servicing, but that they calibrate the gauges they use in the field with a mercury manometer kept at their shop.

Mercury manometers occasionally need servicing to maintain their accuracy, and elemental mercury often remains as a waste. If the manometer is hard to read because of dirt and moisture in the tube, the mercury needs to be removed and replaced.

Mercury Product Focus: Lamps

✔ fluorescent
 - bilirubin blue
 - general purpose straight, U-bent, circline, compact
 - high output
✔ germicidal lamps
 - cold cathode
 - hot cathode
 - slimline
✔ metal halide
✔ high pressure sodium
✔ ultra-violet (TB patient)

There are a number of electric lamps that use mercury as an intrinsic part of their functioning. These lamps include fluorescent, mercury vapor, metal halide, and high pressure sodium lamps. These lamps may be used indoors or outdoors in heat lamps, film projection, photography, dental exams, photochemistry, water purification, or street lighting.

Fluorescent lamps contain mercury in a vapor form. The electric current of the lamp “excites” the mercury atoms, which then give off invisible ultraviolet light. The ultraviolet light then “excites” a powdery phosphorus coating inside the tube that emits visible light. The mercury that is contained in these lamps is emitted into the atmosphere when the lamps are broken, disposed of in landfills, or incinerated.

Fluorescent lamps are still a good option. They last longer and cost less to run than incandescent lights because they use up to 50 percent less electricity. This energy savings helps reduce mercury emissions because small amounts of mercury are present in coal that is burned in power plants. The less energy we use, the less mercury will be released into the environment when coal is burned.
Recycling Your Fluorescent Lamps

Several Wisconsin companies are in the business of recycling fluorescent lamps and incandescent bulbs. The copper coils, and aluminum or brass end pieces are smelted and reused as raw materials for non-food products. The glass can be purified and used to make fiberglass. The mercury is distilled from the phosphor powder and reused in new lamps and thermometers.

State hazardous waste regulations prohibit businesses from disposing of waste lamps and light bulbs in sanitary landfills if those lamps and bulbs contain levels of heavy metals that exceed hazardous waste limits. For information on the storage, collection, and transport of fluorescent lamps, please see the informational handout, “Recycling Your Fluorescent Lamps,” in the “Resources” section of this sourcebook.

New Low Mercury Fluorescent Bulb

Phillips Electronics has developed a long-life fluorescent that contains so little mercury it is no longer considered a hazardous waste. “Typically fluorescent lamps have an overabundance of mercury, because mercury loses its effectiveness due to physical and chemical reactions. So manufacturers put in an overdose of mercury to compensate for these reactions,” said George Preston, a scientist at Philips Lighting Co. Currently, a four-foot lamp contains about 22.8 milligrams of mercury, down from 38.4 milligrams in 1990. Philips’s new lamp contains less than 10 milligrams of mercury. The new lamp, named ALTO™, relies on a “buffering mechanism” that blocks the physical and chemical reactions that cause the mercury to lose its effectiveness over time. The lamp also uses a new form of phosphors patented by Philips.

Types of Bulbs and Lamps that Contain Mercury

- **Fluorescent Lamps** - the tube-style were first used as overhead lighting in offices, now they also come in compact globe shapes for a variety of home and office uses
- **Mercury Vapor Lamps** - the first high intensity discharge (HID) lamps with blue-white light, originally used as farmyard lights
- **Metal Halide Lamps** - newer, more efficient HID lights found in homes and offices
- **High-Pressure Sodium Vapor Lamps** - white-yellow HID lights used for street lamps and outdoor security lighting
- **Neon Lamps** - brightly colored lamps typically used in advertising; most colors contain mercury except red, orange, and pink

- From the Wisconsin Recycling Markets Directory
Medical/Pharmaceutical Use of Mercury - Human Contact

Mercury was used commonly in conventional medicine well into the 1980's. However, virtually all uses have been discontinued and the few remaining uses are likely to be knocked out by the requirements of the New Drug Approval process which requires a manufacturer to demonstrate that the medication is safe and effective. Mercury is acutely and chronically toxic at levels of parts per million and parts per billion, respectively, if there is continuous intake. Moreover, mercury used in medication will be excreted and will contribute to the global pool of mercury.

A Freedom of Information Act request was submitted to the FDA to obtain product names, manufacturers and concentrations in biologic products. The FDA supplied the requested product name and manufacturer information. Thimerosal is used primarily in haemophilus, hepatitis, rabies, tetanus, influenza, diphtheria, and pertussis vaccines.

For OTC products, thimerosal, phenylmercuric acetate, phenylmercuric nitrate, and a few other compounds are still in use as preservatives. Primary uses are in ophthalmic products, contact lens solutions, and nasal sprays. Topical anti-microbals (e.g., tincture of merthiolate) can still be sold, but they have largely disappeared from the market. A mercuric preservative (PMN) was used until quite recently in one brand of hemorrhoid products. The availability of many similar or otherwise identical products without mercury preservatives indicates that mercury use in these products is not essential.

<table>
<thead>
<tr>
<th>Product</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretic</td>
<td>Mersalyl and salts are still manufactured. Extent of use unknown</td>
</tr>
<tr>
<td>Eye area cosmetics</td>
<td>Up to 65 ppm mercury (preservative)</td>
</tr>
<tr>
<td>Hemorrhoidal ointments and creams</td>
<td>Preservative, discontinued early 1995</td>
</tr>
<tr>
<td>Merbromin/ water solution</td>
<td>Used in plastic/reconstructive surgery as a disinfectant and marker</td>
</tr>
<tr>
<td>Mercuric chloride peritoneal lavage in cancer surgery</td>
<td>Great Britain</td>
</tr>
<tr>
<td>OTC ophthalmic and contact lens products</td>
<td>Preservative</td>
</tr>
<tr>
<td>OTC disinfectants</td>
<td>"Mercurochrome" [merbromin], tincture of Merthiolate; both are alcohol solutions</td>
</tr>
<tr>
<td>OTC nasal sprays</td>
<td>Preservative</td>
</tr>
<tr>
<td>Skin bleaching creams</td>
<td>OTC discontinued in US by early 1970s, available by prescription?</td>
</tr>
<tr>
<td>Teething powder</td>
<td>Discontinued in early 1950s</td>
</tr>
<tr>
<td>Vaccines and other biologic products</td>
<td>US FDA has responded to FOIA request</td>
</tr>
</tbody>
</table>
Mercury Product Focus: Switches

Tilt switches
- silent light switches (single pole and three way; discontinued in 1991)
- fire alarm box switch
- pressure control (mounted on bourdon tube or diaphragm)
- temperature control (mounted on bimetal coil or attached to bulb device)
- washing machine lids (for spin cycle shut-off; believed to be no longer in production)
- thermostats
 - room temperature control
 - refrigerators

Another source of mercury that nursing homes may encounter is mercury switches. A small electrical switch may contain 3,500 milligrams of mercury; industrial switches may contain as much as eight pounds of mercury. Mercury is used in temperature-sensitive switches and in mechanical switches. The mechanical (tilt) switches are activated by a change from a vertical to a horizontal position. These are used in products like thermostats and silent switches. Mercury-containing tilt-switches may also be present in or under the lids of clothes washers and chest freezers - they stop the spin cycle or turn on a light. Mercury tilt switches are also found in motion-sensitive and position sensitive safety switches in clothes irons or space heaters. If a mechanical switch is not visible in these items, a mercury switch is probably being used.

Mercury tilt switches have been used in thermostats for more than 40 years. According to Honeywell, Inc., a major manufacturer of thermostats, more than 50 million mercury-containing thermostats have been sold since the 1950s for use in homes and offices. Mercury in these thermostats provide accurate and reliable temperature control, require little maintenance, and do not need a power source. However, each mercury switch in a thermostat contains about 3 grams of mercury. (There may be one or more of these switches in a single thermostat, each switch in a sealed glass bulb.) Alternatives to these products include electronic thermostats, which can be programmed to set room temperatures at predetermined times. (blue brochure: the waste connection)

Float control switches may be used in septic tank and sump pumps to turn the equipment on and off when water is at a certain level. Often, these switches are visible. Temperature-sensitive switches may be used in thermostats. Yet another type of mercury switch, the plunger or displacement relay, is used in high current, high voltage applications that could include lighting, resistance heating, or power supply switching (M2P2).
Reduction Works!

Honeywell Corporation has been running a free take-back program in Minnesota to collect any brand of used mercury-containing thermostat through either a reverse distribution system or a recycle by-mail system.

Honeywell works with heating, ventilating, and air-conditioning (HVAC) wholesalers who sell their products. Honeywell has one license (called a network license) for all the wholesalers who are participating as a consolidation point for the thermostats. HVAC wholesalers contact their Honeywell customer service representatives to order containers for used thermostats, and Honeywell sends the wholesaler a plastic container with an attached lid that holds 100 thermostats.

Homeowners who replace their own thermostats without contractor assistance or with contractors who are not currently participating in the Honeywell program may recycle their thermostats through the free recycle-by-mail system. These individuals can call a toll-free number to receive a free postage paid thermostat mailer.

Mercury Switches in Electrical Applications

(source: Michigan Mercury Pollution Prevention Task Force, 1996)

<table>
<thead>
<tr>
<th>Switch</th>
<th>Quantity of Mercury</th>
<th>Available Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Thermostats</td>
<td>~3,000 - 6,000 mg</td>
<td>Electronic type and snap switches</td>
</tr>
<tr>
<td>· Float Control</td>
<td>~?</td>
<td>Magnetic dry reed switch, optic sensor, or mechanical switch</td>
</tr>
<tr>
<td>(septic tank and sump pumps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Freezer Light</td>
<td>2,000 mg</td>
<td>Mechanical switch</td>
</tr>
<tr>
<td>· Washing Machine</td>
<td>2,000 mg</td>
<td>Mechanical switch</td>
</tr>
<tr>
<td>(power shut off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Silent Switches</td>
<td>2,600 mg</td>
<td>Mechanical switch</td>
</tr>
<tr>
<td>(light switches prior to 1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermo-Electrical Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Accustat</td>
<td>~1,000 mg</td>
<td>?</td>
</tr>
<tr>
<td>("mercury in glass thermostat," a calibrated device resembling a thermometer is used to provide precise temperature control for specialized applications)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Flame Sensor</td>
<td>2,500 mg</td>
<td>Hot surface ignition system for devices or products that have electrical connections.</td>
</tr>
<tr>
<td>(used in residential and commercial gas ranges, mercury is in capillary tube when heated mercury vaporizes and opens gas valve or operates switch. Used for both electrical or mechanical output.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mercury Product Focus: Thermostat Probes (also known as mercury thermocouples)
(from blue waste connection pamphlet)

✔ Some infrared heaters (Robertshaw and Harper-Wyman)
✔ Some furnaces (White Rodgers)

Stainless steel bulb, capillary tube, bellows/ control device: Used for “unsupervised burners” in certain gas fired devices with standing pilot or electronic ignition pilot.

Mercury-containing thermostat probes may be found in several types of gas-fired appliances that have pilot lights such as ranges, ovens, clothes dryers, water heaters, furnaces, or space heaters. The metal probe consists of a metal bulb and thin tube attached to a gas-control valve. The mercury is inside the tube and expands or contracts to open and shut the valve. A high percentage of gas stoves, ovens, and space heaters contain a mercury thermostat probe. Electric stoves and hot water heaters (gas, electric, and oil) may contain mercury thermostat probes. Although non-mercury thermostat probes have been used in these appliances, you should treat all probes as though they contain mercury, unless you know that they do not.

Mercury thermostat probes, also known as flame sensors or gas safety valves, are most commonly present as part of the safety valve that prevents gas flow if the pilot light is not lit. In this application the bulb of the thermostat probe projects into or near the pilot light. These are commonly present in gas ovens and may be present in any other appliance with a pilot light.

A mercury-thermostat probe may also be present as part of the main temperature controlling gas valve. In this application, the probe is in the air or water that is being heated and is not directly in contact with any flame. These are typically found in older ovens, clothes dryers, water heaters, or space heaters.

Mercury Product Focus: Thermometers

✔ Blood bank
✔ Clerget sugar test
✔ Fever/ temperature
✔ Incubator/ water bath
✔ Minimum/ maximum
✔ Tapered bulb (amored)

Digital or aneroid thermometers are good alternatives for most applications of mercury thermometers.

The $1,500 Vacuum Cleaner

A major mercury spill occurred in a hospital in a carpeted room at 2:00 am. No one knew what to do; a nurse made the unfortunate decision to vacuum it with a regular vacuum cleaner. The vacuum cleaner had to be wrapped up and made ready for hazardous waste disposal, at a cost of $1,500!
MERCURY SPILLS

It is essential to handle mercury and mercury-containing items safely. Small droplets of spilled mercury may lodge in cracks and sinks, mix with dust, accumulate on work surfaces, and adhere to knit fabrics, shoe soles, watches, gold, and other jewelry. This allows for mercury to potentially be transported to other locations, homes, or businesses.

The Costs of Mercury Spills
Mercury spills can be expensive for a number of reasons. Here are some examples:

The Cost of Clean-up
- A mercury-containing sphygmomanometer broken on a carpeted floor at Butterworth Hospital cost $2000 to clean up.

Labor costs
- It took Riverside Hospital 8 to 16 hours to clean up a mercury spill (the mercury had fallen in tile crevices).

Facility Down-Time
- The room in which a mercury spill occurs will be unavailable for use until the site is decontaminated. Riverside Hospital found that their room was out of service for at least one day.

Equipment Loss
- A mercury-containing switch in an oven in a University of Michigan Hospital cafeteria exploded. It cost $3500 to clean up the spill. The oven, a $25,000 piece of equipment, was irreparably damaged.

Training Time
- Continuing to use mercury containing items can be expensive for your facility because of the needed staff training for spill response plans. However, if you are still using mercury-containing products, don’t neglect this important step! An improperly handled spill can end up costing even more to decontaminate.

Handle Mercury Safely!

- Use mercury only in uncarpeted, well-ventilated areas. Provide troughs on smooth surfaced tables and benches to collect mercury spills. Reserve the room for mercury use only; restrict traffic in the area.
- Ask workers to remove all watches and other jewelry - especially gold jewelry since mercury readily combines with gold - and have them wear a mercury vapor respirator and protective clothing: gloves, disposable gowns, and shoe coverings.
- Prohibit smoking, eating, and drinking in the area.
- Train all workers to understand the properties and hazards of mercury and to carry out safe handling procedures and specific policies related to mercury disposal.
- Clean and calibrate all mercury-containing equipment according to the manufacturer’s recommended handling procedures and the formal procedures posed by your communications or safety program supervisors.
- Ask your safety supply vendor for a mercury vacuum sweeper and spill cleanup kit. Having the right equipment on hand will limit the amount of mercury released into the atmosphere.

- From “The Case Against Mercury: Rx for Pollution Prevention,” The Terrane Institute
ACTION IDEAS FOR NURSING HOMES TO CONSIDER

Pollution Prevention

✔ Phase out mercury-containing medical products such as blood pressure monitors (sphygmomanometers) and thermometers.

✔ Substitute zinc air or silver oxide batteries for your mercuric oxide (mercury-zinc) batteries.

✔ Use safe, non-mercury cleaners and degreasers in labs, housekeeping departments, and maintenance areas.

✔ When remodeling or replacing old equipment, replace thermostats containing mercury switches with thermostats containing electronic type and snap switches, and replace “silent” light switches with mechanical light switches.

✔ Purchase septic tank and sump pumps that contain magnetic dry reed switches, optic sensors, or mechanical switches instead of mercury tilt switches.

✔ Research your use of plunger or displacement relays (used in high current/high voltage applications including lighting, resistance heating, power supply switching); consider replacing these relays with mechanical switches.

✔ Examine use of other mercury-containing products in your facility and consider the alternatives for generators, high intensity lamps, and manometers.

✔ Purchasing departments need to know the cost of alternatives and the suppliers for the alternatives. They should consider disposal costs when evaluating a product; total product cost should include disposal costs and costs for cleaning up accidents.

✔ Consider the use of an Administrative Directive, either formal or informal, to end the purchase of mercury-containing products.

Recycling

✔ Establish a battery collection program.

✔ Continue to use fluorescent lamps! Even though fluorescent lamps contain mercury, they are a good choice because they use much less energy than regular bulbs. Consider the use of low-mercury fluorescent lamps; recycle your fluorescent lamps currently in use. Try not to break these lamps because some of the mercury will escape into the air.

✔ Recycle or dispose of mercury-containing products in your facility in an environmentally sound manner.
Good Management Practices

✔ Label instruments containing mercury.

✔ Be sure workers are familiar with the laboratory’s policies on the proper disposal practices when working with mercury solutions in a laboratory.

✔ Follow proper procedures when cleaning or refilling instruments that contain mercury. Instrument cleaning or refilling should take place in a well ventilated area, and, if possible, over a tray to contain any spills.

✔ Start an intensive educational program to keep mercury-containing products (thermometers, batteries, etc.) out of the medical waste red bags. When these bags are incinerated, the mercury vaporizes and enters the atmosphere.

✔ Establish effective spill response measures to ensure the mercury already in your facility is handled in a safe and proper manner. To minimize the risk of an accidental spill, never handle mercury over a sink. The educational program for spill prevention and cleanup should be visual and simple. You may want to consider a video.

✔ Clean or flush the traps, sumps, and pipes in your sewer lines to rid your facility of historical uses of mercury. See excerpts from the MWRA/MASCO Infrastructure Subcommittee Maintenance Guidebook that appear in the “Resources” section of this sourcebook for more information.
SAMPLE PROCLAMATION

Your facility may wish to formally declare your commitment to mercury reduction. You may use the proclamation below, or adapt it to suit your needs.

WHEREAS mercury is an elemental substance, that once released into the environment, easily and rapidly changes forms to several organic and inorganic states that transfer from soil to air to water and back again;

WHEREAS the organic form of mercury, methylmercury, bioaccumulates in aquatic ecosystems to magnify concentrations in animal tissue in increasing degrees up to 250,000 times;

WHEREAS methylmercury, the most toxic form of mercury, can affect the reproductive efforts of top predators in aquatic environments such as loons, otters, mink, and panthers;

WHEREAS the neurotoxic effects of high levels of methylmercury poisoning in humans has been established, and low-level doses of methylmercury consumption can potentially effect human health, especially that of a fetus;

WHEREAS elemental mercury is a highly toxic substance which can vaporize easily and cause both acute and chronic health effects including severe respiratory irritation and damage to the central nervous system;

WHEREAS mercury has been identified internationally as a toxic substance of concern, and mercury contamination has led to fish consumption advisories for more than 235 lakes and 350 miles of rivers in Wisconsin;

WHEREAS the majority of mercury entering Wisconsin comes from anthropogenic sources, and one-quarter of these emissions are the result of the purposeful use of mercury;

WHEREAS mercury is used widely in consumer and industrial products, where, in most cases, alternative, mercury-free products are available;

WHEREAS pollution prevention or product substitution is a progressive approach to protecting the environment that eliminates or minimizes the generation of mercury-bearing waste, making it one of the most favorable strategies for maintaining a clean environment;

WHEREAS pollution prevention for mercury can help environmental conditions, as well as protect the health and safety of workers;

WHEREAS recognizing mercury minimization as an active opportunity to improve the environment of Wisconsin and the environment of our business, we, the undersigned, do hereby declare our business to be a mercury minimization participant;
WE commit to research the following mercury minimization opportunities in our facility and implement those we find most feasible:

Pollution Prevention
- Phase out mercury-containing medical products
- Substitute zinc air or silver oxide batteries for mercuric oxide (mercury-zinc) batteries
- Use safe, non-mercury cleaners and degreasers in labs, housekeeping departments, and maintenance areas
- Replace mercury-containing thermostats and switches with mercury-free alternatives when remodeling or replacing old equipment
- Purchase septic tank and sump pumps that contain magnetic dry reed switches, optic sensors, or mechanical switches instead of mercury tilt switches
- Examine use of other mercury-containing products in your facility and consider the alternatives for these: generators, high intensity lamps, manometers

Recycling
- Establish a battery collection program
- Recycle fluorescent lamps
- Recycle or dispose of mercury-containing products in an environmentally sound manner

Good Management Practices
- Label instruments containing mercury
- Follow proper procedures when cleaning or refilling instruments that contain mercury.
- Start an intensive educational program to keep mercury-containing products (thermometers, batteries, etc.) out the medical waste red bags.
- Establish effective spill response measures to ensure the mercury already in your facility is handled in a safe and proper manner.

Facility

Name Date Signed
BIBLIOGRAPHY

The information included in this pamphlet is essentially a compilation of the best mercury pollution prevention work to date. Information was gathered from the documents below; some material may have been quoted directly from these sources:

“Hospital Mercury Work Group Operations Subcommittee Final Report,” Massachusetts Water Resources Authority (MWRA) and MASCO Mercury Work Group, August 21, 1995

-Managing Used Dry-Cell Batteries: A Household Hazardous Waste Fact Sheet,” MPCA

“Medical Waste Pollution Prevention: Keep Mercury Out of the Wastewater Stream,” USEPA Region 5, September 1995

“Mercury Elimination and Reduction,” Pollution Probe, 1997

“Mercury in Medical Waste,” fact sheets 1-3, USEPA Region 5, September 1995

“Mercury in the Environment: The Waste Connection,” MPCA, MD EQ, WDNR

“Mercury in Minnesota Slide Show Script,” Western Lake Superior Sanitary District, November 1995

“Mercury Pollution Prevention in the Health Care System,” conference notes compiled by Emily Moore, MPCA, April 1996

“Mercury Pollution Prevention in Michigan,” A Report by the Michigan Mercury Pollution Prevention Task Force, April, 1996

“Mercury, Power Plants and the Environment: Basic Facts about Mercury and Coal-fired Power Plants, the Environment, Fish and Wildlife, and Human Health,” compiled by Steven Ugoretz, WDNR

“Mercury Products Study,” John Gilkeson, Minnesota Pollution Control Agency, May 1996

“Preventing Mercury Waste Generation Through Comprehensive Environmental Management within the Healthcare Industry,” Steering Committee Meeting Summary Notes, April 1996

“Sources of Mercury in Healthcare Business,” Detroit Water and Sewerage Department, July 1995

“Strategies for Mercury Control in Minnesota,” MPCA Mercury Task Force, July 1994

“The Case Against Mercury: Rx for Pollution Prevention,” The Terrene Institute

“Waste Household Battery Management in Wisconsin,” SHWEC Waste Education Series