

COMPRESSED AIR SYSTEMS EFFICIENCY

by
John Adams, P.E.
Georgia Institute of Technology

AA-80831
1

© 1998 Georgia Tech Research Corporation

Presentation Outline

Compressed Air equipment
Air Systems
Summary Information

Format: Sample Case

AA-80831
2

© 1998 Georgia Tech Research Corporation

Typical Plant

10-15 % electricity is used for compressed air

Operating Cost Factors:

- System age
- Equipment sizing
- Standby capacity
- Power costs
- Hours operated
- Type of dryer
- Condition of equipment
- Distribution system design
- Compressor duty

AA-80831
3

© 1998 Georgia Tech Research Corporation

Example System:

100 Hp water cooled, oil flooded, rotary screw

Load Profile:

- 100% for 1800hr
- 75% for 1800 hr
- 50% for 1800 hr
- 00% for 1800 hr

AA-80831
4

© 1998 Georgia Tech Research Corporation

Example System Output

~ 450,000 hp-hr / yr

Operating cost: \$33,000 / yr, plus maintenance

or

Air Cost: ~ \$0.25/1000 cfm

AA-80831
5

© 1998 Georgia Tech Research Corporation

Example System Load Profile:

- 25% - Full load
- 25% - 3/4 load
- 25% - 1/2 load
- 25% - 0 load

AA-80831
6

© 1998 Georgia Tech Research Corporation

Substitute 3x50hp compressors

<u>Hrs.</u>	<u>#1</u>	<u>#2</u>	<u>#3</u>
1800	100%	100%	standby
1800	100%	50%	standby
1800	100%	standby	standby
1800	0%	standby	standby

AA-80831
7

© 1998 Georgia Tech Research Corporation

Substitute 3x50hp compressors

Power cost: \$30,360 (8 % savings*)

* Excluding demand savings

AA-80831
8

© 1998 Georgia Tech Research Corporation

Waste Heat Recovery

80 - 90% of nominal hp is waste heat

89 - 90% of waste heat is available

**Ex: Use waste heat for winter heating
results in a \$3500 savings in heat costs.**

AA-80831
9

© 1998 Georgia Tech Research Corporation

High efficiency drive motor:

**Saves an additional \$1150 per year in power
costs**

AA-80831
10

© 1998 Georgia Tech Research Corporation

Convert to air cooling:

Assume cooling water costs \$2.00 / 1000 gal:

Savings in water costs*: \$6235/year

AA-80831
11

© 1998 Georgia Tech Research Corporation

Example System Air Dryer

- Rated at 500 cfm continuous duty
- Heaterless
- Regenerative desiccant
- Dries air to -40F dew point
- Operating on a fixed cycle

AA-80831
12

© 1998 Georgia Tech Research Corporation

Air dryer improvements

Note: Dryers are usually designed for maximum moisture load at compressor full load.

Actual moisture load is 20 - 30% design

Convert from a fixed cycle to a demand control cycle:

Purge air savings: \$3130/yr in power costs

AA-80831
13

© 1998 Georgia Tech Research Corporation

Air Dryer improvement:

Convert the coalescing prefilter to a high efficiency prefilter.

Benefit: Reduce pressure drop: 5psi.

Net savings: \$700 / yr.

Note: 1) Avoid two prefilters in series.

2) Similar savings achieved by keeping compressor suction filters clean.

AA-80831
14

© 1998 Georgia Tech Research Corporation

Excessive Compressor Suction Temperature

Keep compressor room below 110F

AA-80831
15

© 1998 Georgia Tech Research Corporation

Air System Problems

- Moisture accumulation (water hammer, corrosion, regulator fouling,
- Pressure waves
- Excessive pressure drop

AA-80831
16

© 1998 Georgia Tech Research Corporation

Excessive pressure drop

- Line & valve sizing
- Excessive number of ells and tees

AA-80831
17

© 1998 Georgia Tech Research Corporation

System Line Sizing*

cfm	1/2	3/4	1	1 1/4	1 1/2	2
10	6	1	.3			
30	58	9	2.5	.6	.3	
50		25	7	2	.7	.2
80		64	18	4	2	.5
125			49	10	5	1
200				26	11	3

* psi drop per 1000' of pipe

AA-80831
18

© 1998 Georgia Tech Research Corporation

System Sizing: Fittings*

Pipe Size	Gate valve	LR ell	Std ell	tee(side)
1/2	.36	.62	1.5	3.1
3/4	.48	.82	2.1	4.1
1	.61	1.1	2.6	5.2

* Equivalent feet of pipe

AA-80831
19

© 1998 Georgia Tech Research Corporation

Example System

Assume 2 1/2" piping is adequate for the header (1000 ft)

Substitute 3" piping

- Losses decrease from 6.0 psig to 1.9 psig
- Net power savings \$450/yr

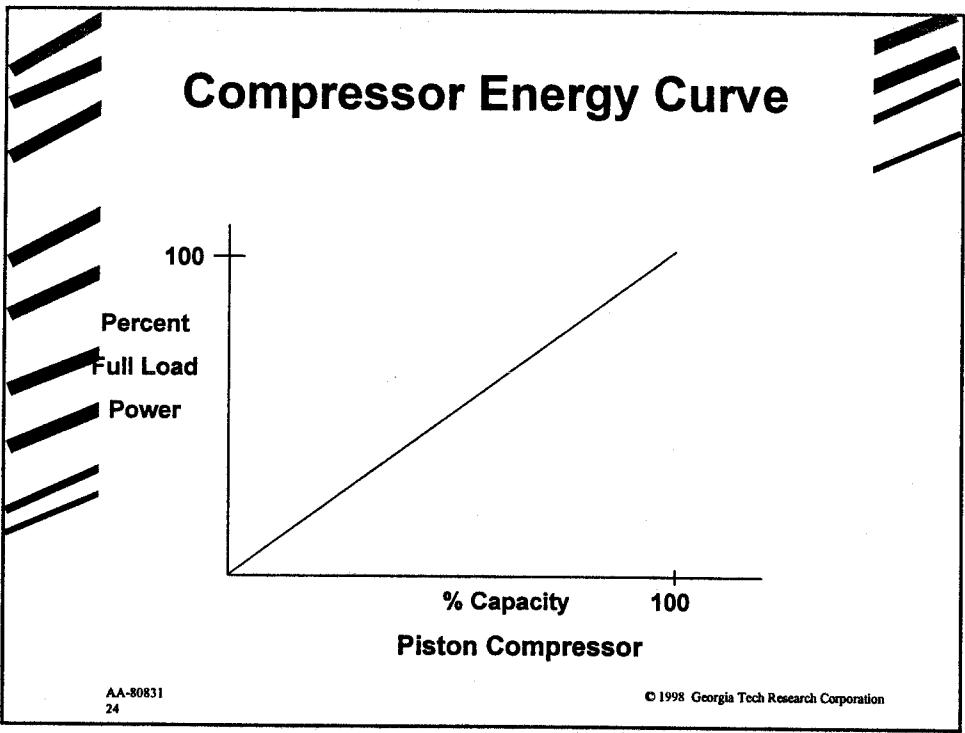
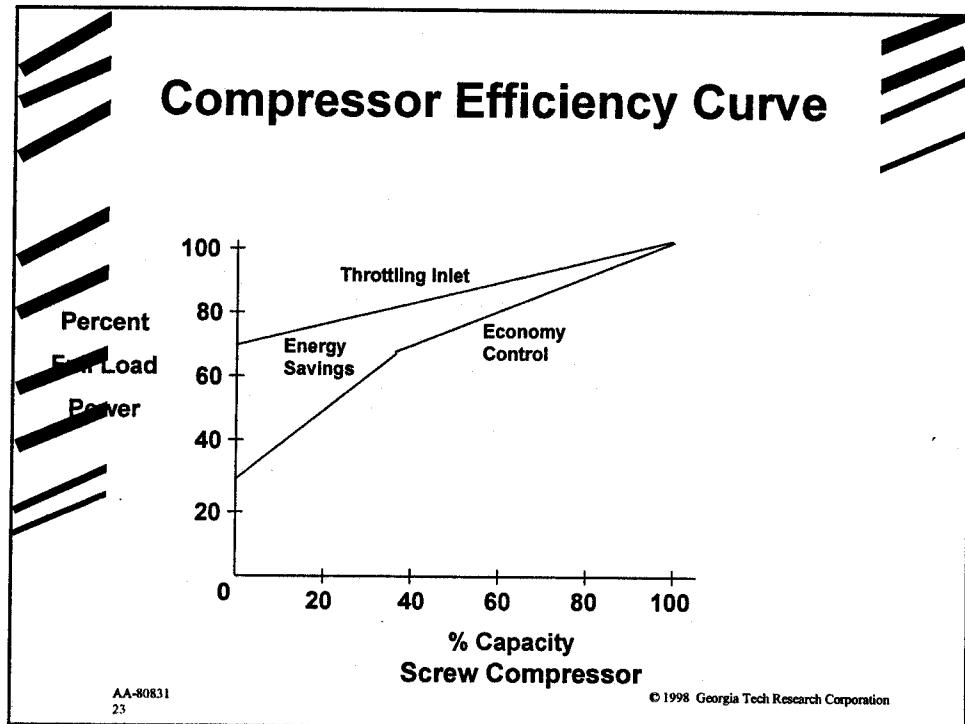
AA-80831
20

© 1998 Georgia Tech Research Corporation

Cost of Air Leaks (100 psig system)

<u>Orifice Size</u>	<u>CFM</u>	<u>Annual Cost</u>
1/64	0.41	\$44
1/32	1.6	\$172
1/16	6.5	\$702
1/8	26	\$2,800
1/4	104	\$11,232

AA-80831
21



© 1998 Georgia Tech Research Corporation

Quick Diagnostics

- 1. Check compressor duty when plant is down.**
- 2. Check system pressure drop.**
- 3. Observe compressor duty.**
- 4. Observe blow down.**
- 5. Measure compressor room temperature.**
- 6. Inspect suction filter.**
- 7. Inspect compressor coolers.**
- 8. Observe compressor oil consumption.**

AA-80831
22

© 1998 Georgia Tech Research Corporation

